Mariam-Elz commited on
Commit
b7eef6f
Β·
verified Β·
1 Parent(s): e03ed9e

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +135 -13
README.md CHANGED
@@ -1,13 +1,135 @@
1
- ---
2
- title: CRM
3
- emoji: πŸ“Š
4
- colorFrom: gray
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 4.21.0
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Convolutional Reconstruction Model
2
+
3
+ Official implementation for *CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model*.
4
+
5
+ **CRM is a feed-forward model which can generate 3D textured mesh in 10 seconds.**
6
+
7
+ ## [Project Page](https://ml.cs.tsinghua.edu.cn/~zhengyi/CRM/) | [Arxiv](https://arxiv.org/abs/2403.05034) | [HF-Demo](https://huggingface.co/spaces/Zhengyi/CRM) | [Weights](https://huggingface.co/Zhengyi/CRM)
8
+
9
+ https://github.com/thu-ml/CRM/assets/40787266/8b325bc0-aa74-4c26-92e8-a8f0c1079382
10
+
11
+ ## Try CRM 🍻
12
+ * Try CRM at [Huggingface Demo](https://huggingface.co/spaces/Zhengyi/CRM).
13
+ * Try CRM at [Replicate Demo](https://replicate.com/camenduru/crm). Thanks [@camenduru](https://github.com/camenduru)!
14
+
15
+ ## Install
16
+
17
+ ### Step 1 - Base
18
+
19
+ Install package one by one, we use **python 3.9**
20
+
21
+ ```bash
22
+ pip install torch==1.13.0+cu117 torchvision==0.14.0+cu117 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu117
23
+ pip install torch-scatter==2.1.1 -f https://data.pyg.org/whl/torch-1.13.1+cu117.html
24
+ pip install kaolin==0.14.0 -f https://nvidia-kaolin.s3.us-east-2.amazonaws.com/torch-1.13.1_cu117.html
25
+ pip install -r requirements.txt
26
+ ```
27
+
28
+ besides, one by one need to install xformers manually according to the official [doc](https://github.com/facebookresearch/xformers?tab=readme-ov-file#installing-xformers) (**conda no need**), e.g.
29
+
30
+ ```bash
31
+ pip install ninja
32
+ pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers
33
+ ```
34
+
35
+ ### Step 2 - Nvdiffrast
36
+
37
+ Install nvdiffrast according to the official [doc](https://nvlabs.github.io/nvdiffrast/#installation), e.g.
38
+
39
+ ```bash
40
+ pip install git+https://github.com/NVlabs/nvdiffrast
41
+ ```
42
+
43
+
44
+
45
+ ## Inference
46
+
47
+ We suggest gradio for a visualized inference.
48
+
49
+ ```
50
+ gradio app.py
51
+ ```
52
+
53
+ ![image](https://github.com/thu-ml/CRM/assets/40787266/4354d22a-a641-4531-8408-c761ead8b1a2)
54
+
55
+ For inference in command lines, simply run
56
+ ```bash
57
+ CUDA_VISIBLE_DEVICES="0" python run.py --inputdir "examples/kunkun.webp"
58
+ ```
59
+ It will output the preprocessed image, generated 6-view images and CCMs and a 3D model in obj format.
60
+
61
+ **Tips:** (1) If the result is unsatisfatory, please check whether the input image is correctly pre-processed into a grey background. Otherwise the results will be unpredictable.
62
+ (2) Different from the [Huggingface Demo](https://huggingface.co/spaces/Zhengyi/CRM), this official implementation uses UV texture instead of vertex color. It has better texture than the online demo but longer generating time owing to the UV texturing.
63
+
64
+ ## Train
65
+ We provide training script for multivew generation and their data requirements.
66
+ To launch a simple one instance overfit training of multivew gen:
67
+ ```shell
68
+ accelerate launch $accelerate_args train.py --config configs/nf7_v3_SNR_rd_size_stroke_train.yaml \
69
+ config.batch_size=1 \
70
+ config.eval_interval=100
71
+ ```
72
+ To launch a simple one instance overfit training of CCM gen:
73
+ ```shell
74
+ accelerate launch $accelerate_args train_stage2.py --config configs/stage2-v2-snr_train.yaml \
75
+ config.batch_size=1 \
76
+ config.eval_interval=100
77
+ ```
78
+
79
+ ### data prepare
80
+ To specify the data dir modify the following params in the configs/xxxx.yaml
81
+ ```yaml
82
+ base_dir: <path to multiview piexl image basedir>
83
+ xyz_base: <path to related CCM image basedir>
84
+ caption_csv: <path to caption.csv>
85
+ ```
86
+ The file tree of basedirs should satisfy as following:
87
+ ```shell
88
+ base_dir
89
+ β”œβ”€β”€ uid1
90
+ β”‚ β”œβ”€β”€ 000.png
91
+ β”‚ β”œβ”€β”€ 001.png
92
+ β”‚ β”œβ”€β”€ 002.png
93
+ β”‚ β”œβ”€β”€ 003.png
94
+ β”‚ β”œβ”€β”€ 004.png
95
+ β”‚ β”œβ”€β”€ 005.png
96
+ β”œβ”€β”€ uid2
97
+ ....
98
+
99
+ xyz_base
100
+ β”œβ”€β”€ uid1
101
+ β”‚ β”œβ”€β”€ xyz_new_000.png
102
+ β”‚ β”œβ”€β”€ xyz_new_001.png
103
+ β”‚ β”œβ”€β”€ xyz_new_002.png
104
+ β”‚ β”œβ”€β”€ xyz_new_003.png
105
+ β”‚ β”œβ”€β”€ xyz_new_004.png
106
+ β”‚ └── xyz_new_005.png
107
+ β”œβ”€β”€ uid2
108
+ ....
109
+ ```
110
+ The `train_example` dir shows a minimal case of train data and `caption.csv` file.
111
+
112
+
113
+
114
+ ## Todo List
115
+ - [x] Release inference code.
116
+ - [x] Release pretrained models.
117
+ - [ ] Optimize inference code to fit in low memery GPU.
118
+ - [x] Upload training code.
119
+
120
+ ## Acknowledgement
121
+ - [ImageDream](https://github.com/bytedance/ImageDream)
122
+ - [nvdiffrast](https://github.com/NVlabs/nvdiffrast)
123
+ - [kiuikit](https://github.com/ashawkey/kiuikit)
124
+ - [GET3D](https://github.com/nv-tlabs/GET3D)
125
+
126
+ ## Citation
127
+
128
+ ```
129
+ @article{wang2024crm,
130
+ title={CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model},
131
+ author={Zhengyi Wang and Yikai Wang and Yifei Chen and Chendong Xiang and Shuo Chen and Dajiang Yu and Chongxuan Li and Hang Su and Jun Zhu},
132
+ journal={arXiv preprint arXiv:2403.05034},
133
+ year={2024}
134
+ }
135
+ ```