Spaces:
Runtime error
Runtime error
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
|
@@ -1,299 +1,228 @@
|
|
| 1 |
-
# Not ready to use yet
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
-
import
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
import
|
| 8 |
-
|
| 9 |
-
import
|
| 10 |
-
from
|
| 11 |
-
|
| 12 |
-
import
|
| 13 |
-
import
|
| 14 |
-
|
| 15 |
-
import
|
| 16 |
-
import
|
| 17 |
-
import
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
from
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
width
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
new_image
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
padded_image
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
image =
|
| 93 |
-
image =
|
| 94 |
-
image
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
pipeline
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
parser
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
parser.
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
model =
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
)
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
)
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
]
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
fn=preprocess_image,
|
| 230 |
-
inputs=[image_input, background_choice, foreground_ratio, back_groud_color],
|
| 231 |
-
outputs=[processed_image],
|
| 232 |
-
).success(
|
| 233 |
-
fn=gen_image,
|
| 234 |
-
inputs=inputs,
|
| 235 |
-
outputs=outputs,
|
| 236 |
-
)
|
| 237 |
-
demo.queue().launch()
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
# import torch
|
| 242 |
-
# import gradio as gr
|
| 243 |
-
# import requests
|
| 244 |
-
# import os
|
| 245 |
-
|
| 246 |
-
# # Download model weights from Hugging Face model repo (if not already present)
|
| 247 |
-
# model_repo = "Mariam-Elz/CRM" # Your Hugging Face model repo
|
| 248 |
-
|
| 249 |
-
# model_files = {
|
| 250 |
-
# "ccm-diffusion.pth": "ccm-diffusion.pth",
|
| 251 |
-
# "pixel-diffusion.pth": "pixel-diffusion.pth",
|
| 252 |
-
# "CRM.pth": "CRM.pth",
|
| 253 |
-
# }
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
# os.makedirs("models", exist_ok=True)
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
# for filename, output_path in model_files.items():
|
| 261 |
-
# file_path = f"models/{output_path}"
|
| 262 |
-
# if not os.path.exists(file_path):
|
| 263 |
-
# url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
|
| 264 |
-
# print(f"Downloading {filename}...")
|
| 265 |
-
# response = requests.get(url)
|
| 266 |
-
# with open(file_path, "wb") as f:
|
| 267 |
-
# f.write(response.content)
|
| 268 |
-
|
| 269 |
-
# # Load model (This part depends on how the model is defined)
|
| 270 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 271 |
-
|
| 272 |
-
# def load_model():
|
| 273 |
-
# model_path = "models/CRM.pth"
|
| 274 |
-
# model = torch.load(model_path, map_location=device)
|
| 275 |
-
# model.eval()
|
| 276 |
-
# return model
|
| 277 |
-
|
| 278 |
-
# model = load_model()
|
| 279 |
-
|
| 280 |
-
# # Define inference function
|
| 281 |
-
# def infer(image):
|
| 282 |
-
# """Process input image and return a reconstructed image."""
|
| 283 |
-
# with torch.no_grad():
|
| 284 |
-
# # Assuming model expects a tensor input
|
| 285 |
-
# image_tensor = torch.tensor(image).to(device)
|
| 286 |
-
# output = model(image_tensor)
|
| 287 |
-
# return output.cpu().numpy()
|
| 288 |
-
|
| 289 |
-
# # Create Gradio UI
|
| 290 |
-
# demo = gr.Interface(
|
| 291 |
-
# fn=infer,
|
| 292 |
-
# inputs=gr.Image(type="numpy"),
|
| 293 |
-
# outputs=gr.Image(type="numpy"),
|
| 294 |
-
# title="Convolutional Reconstruction Model",
|
| 295 |
-
# description="Upload an image to get the reconstructed output."
|
| 296 |
-
# )
|
| 297 |
-
|
| 298 |
-
# if __name__ == "__main__":
|
| 299 |
-
# demo.launch()
|
|
|
|
| 1 |
+
# Not ready to use yet
|
| 2 |
+
import argparse
|
| 3 |
+
import numpy as np
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from omegaconf import OmegaConf
|
| 6 |
+
import torch
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import PIL
|
| 9 |
+
from pipelines import TwoStagePipeline
|
| 10 |
+
from huggingface_hub import hf_hub_download
|
| 11 |
+
import os
|
| 12 |
+
import rembg
|
| 13 |
+
from typing import Any
|
| 14 |
+
import json
|
| 15 |
+
import os
|
| 16 |
+
import json
|
| 17 |
+
import argparse
|
| 18 |
+
|
| 19 |
+
from model import CRM
|
| 20 |
+
from inference import generate3d
|
| 21 |
+
|
| 22 |
+
pipeline = None
|
| 23 |
+
rembg_session = rembg.new_session()
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def expand_to_square(image, bg_color=(0, 0, 0, 0)):
|
| 27 |
+
# expand image to 1:1
|
| 28 |
+
width, height = image.size
|
| 29 |
+
if width == height:
|
| 30 |
+
return image
|
| 31 |
+
new_size = (max(width, height), max(width, height))
|
| 32 |
+
new_image = Image.new("RGBA", new_size, bg_color)
|
| 33 |
+
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
|
| 34 |
+
new_image.paste(image, paste_position)
|
| 35 |
+
return new_image
|
| 36 |
+
|
| 37 |
+
def check_input_image(input_image):
|
| 38 |
+
if input_image is None:
|
| 39 |
+
raise gr.Error("No image uploaded!")
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def remove_background(
|
| 43 |
+
image: PIL.Image.Image,
|
| 44 |
+
rembg_session = None,
|
| 45 |
+
force: bool = False,
|
| 46 |
+
**rembg_kwargs,
|
| 47 |
+
) -> PIL.Image.Image:
|
| 48 |
+
do_remove = True
|
| 49 |
+
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
|
| 50 |
+
# explain why current do not rm bg
|
| 51 |
+
print("alhpa channl not enpty, skip remove background, using alpha channel as mask")
|
| 52 |
+
background = Image.new("RGBA", image.size, (0, 0, 0, 0))
|
| 53 |
+
image = Image.alpha_composite(background, image)
|
| 54 |
+
do_remove = False
|
| 55 |
+
do_remove = do_remove or force
|
| 56 |
+
if do_remove:
|
| 57 |
+
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
|
| 58 |
+
return image
|
| 59 |
+
|
| 60 |
+
def do_resize_content(original_image: Image, scale_rate):
|
| 61 |
+
# resize image content wile retain the original image size
|
| 62 |
+
if scale_rate != 1:
|
| 63 |
+
# Calculate the new size after rescaling
|
| 64 |
+
new_size = tuple(int(dim * scale_rate) for dim in original_image.size)
|
| 65 |
+
# Resize the image while maintaining the aspect ratio
|
| 66 |
+
resized_image = original_image.resize(new_size)
|
| 67 |
+
# Create a new image with the original size and black background
|
| 68 |
+
padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0))
|
| 69 |
+
paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2)
|
| 70 |
+
padded_image.paste(resized_image, paste_position)
|
| 71 |
+
return padded_image
|
| 72 |
+
else:
|
| 73 |
+
return original_image
|
| 74 |
+
|
| 75 |
+
def add_background(image, bg_color=(255, 255, 255)):
|
| 76 |
+
# given an RGBA image, alpha channel is used as mask to add background color
|
| 77 |
+
background = Image.new("RGBA", image.size, bg_color)
|
| 78 |
+
return Image.alpha_composite(background, image)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def preprocess_image(image, background_choice, foreground_ratio, backgroud_color):
|
| 82 |
+
"""
|
| 83 |
+
input image is a pil image in RGBA, return RGB image
|
| 84 |
+
"""
|
| 85 |
+
print(background_choice)
|
| 86 |
+
if background_choice == "Alpha as mask":
|
| 87 |
+
background = Image.new("RGBA", image.size, (0, 0, 0, 0))
|
| 88 |
+
image = Image.alpha_composite(background, image)
|
| 89 |
+
else:
|
| 90 |
+
image = remove_background(image, rembg_session, force_remove=True)
|
| 91 |
+
image = do_resize_content(image, foreground_ratio)
|
| 92 |
+
image = expand_to_square(image)
|
| 93 |
+
image = add_background(image, backgroud_color)
|
| 94 |
+
return image.convert("RGB")
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def gen_image(input_image, seed, scale, step):
|
| 98 |
+
global pipeline, model, args
|
| 99 |
+
pipeline.set_seed(seed)
|
| 100 |
+
rt_dict = pipeline(input_image, scale=scale, step=step)
|
| 101 |
+
stage1_images = rt_dict["stage1_images"]
|
| 102 |
+
stage2_images = rt_dict["stage2_images"]
|
| 103 |
+
np_imgs = np.concatenate(stage1_images, 1)
|
| 104 |
+
np_xyzs = np.concatenate(stage2_images, 1)
|
| 105 |
+
|
| 106 |
+
glb_path, obj_path = generate3d(model, np_imgs, np_xyzs, args.device)
|
| 107 |
+
return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path, obj_path
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
parser = argparse.ArgumentParser()
|
| 111 |
+
parser.add_argument(
|
| 112 |
+
"--stage1_config",
|
| 113 |
+
type=str,
|
| 114 |
+
default="configs/nf7_v3_SNR_rd_size_stroke.yaml",
|
| 115 |
+
help="config for stage1",
|
| 116 |
+
)
|
| 117 |
+
parser.add_argument(
|
| 118 |
+
"--stage2_config",
|
| 119 |
+
type=str,
|
| 120 |
+
default="configs/stage2-v2-snr.yaml",
|
| 121 |
+
help="config for stage2",
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
parser.add_argument("--device", type=str, default="cuda")
|
| 125 |
+
args = parser.parse_args()
|
| 126 |
+
|
| 127 |
+
crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth")
|
| 128 |
+
specs = json.load(open("configs/specs_objaverse_total.json"))
|
| 129 |
+
model = CRM(specs).to(args.device)
|
| 130 |
+
model.load_state_dict(torch.load(crm_path, map_location = args.device), strict=False)
|
| 131 |
+
|
| 132 |
+
stage1_config = OmegaConf.load(args.stage1_config).config
|
| 133 |
+
stage2_config = OmegaConf.load(args.stage2_config).config
|
| 134 |
+
stage2_sampler_config = stage2_config.sampler
|
| 135 |
+
stage1_sampler_config = stage1_config.sampler
|
| 136 |
+
|
| 137 |
+
stage1_model_config = stage1_config.models
|
| 138 |
+
stage2_model_config = stage2_config.models
|
| 139 |
+
|
| 140 |
+
xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth")
|
| 141 |
+
pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth")
|
| 142 |
+
stage1_model_config.resume = pixel_path
|
| 143 |
+
stage2_model_config.resume = xyz_path
|
| 144 |
+
|
| 145 |
+
pipeline = TwoStagePipeline(
|
| 146 |
+
stage1_model_config,
|
| 147 |
+
stage2_model_config,
|
| 148 |
+
stage1_sampler_config,
|
| 149 |
+
stage2_sampler_config,
|
| 150 |
+
device=args.device,
|
| 151 |
+
dtype=torch.float16
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
with gr.Blocks() as demo:
|
| 155 |
+
gr.Markdown("# CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model")
|
| 156 |
+
with gr.Row():
|
| 157 |
+
with gr.Column():
|
| 158 |
+
with gr.Row():
|
| 159 |
+
image_input = gr.Image(
|
| 160 |
+
label="Image input",
|
| 161 |
+
image_mode="RGBA",
|
| 162 |
+
sources="upload",
|
| 163 |
+
type="pil",
|
| 164 |
+
)
|
| 165 |
+
processed_image = gr.Image(label="Processed Image", interactive=False, type="pil", image_mode="RGB")
|
| 166 |
+
with gr.Row():
|
| 167 |
+
with gr.Column():
|
| 168 |
+
with gr.Row():
|
| 169 |
+
background_choice = gr.Radio([
|
| 170 |
+
"Alpha as mask",
|
| 171 |
+
"Auto Remove background"
|
| 172 |
+
], value="Auto Remove background",
|
| 173 |
+
label="backgroud choice")
|
| 174 |
+
# do_remove_background = gr.Checkbox(label=, value=True)
|
| 175 |
+
# force_remove = gr.Checkbox(label=, value=False)
|
| 176 |
+
back_groud_color = gr.ColorPicker(label="Background Color", value="#7F7F7F", interactive=False)
|
| 177 |
+
foreground_ratio = gr.Slider(
|
| 178 |
+
label="Foreground Ratio",
|
| 179 |
+
minimum=0.5,
|
| 180 |
+
maximum=1.0,
|
| 181 |
+
value=1.0,
|
| 182 |
+
step=0.05,
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
with gr.Column():
|
| 186 |
+
seed = gr.Number(value=1234, label="seed", precision=0)
|
| 187 |
+
guidance_scale = gr.Number(value=5.5, minimum=3, maximum=10, label="guidance_scale")
|
| 188 |
+
step = gr.Number(value=50, minimum=30, maximum=100, label="sample steps", precision=0)
|
| 189 |
+
text_button = gr.Button("Generate 3D shape")
|
| 190 |
+
gr.Examples(
|
| 191 |
+
examples=[os.path.join("examples", i) for i in os.listdir("examples")],
|
| 192 |
+
inputs=[image_input],
|
| 193 |
+
)
|
| 194 |
+
with gr.Column():
|
| 195 |
+
image_output = gr.Image(interactive=False, label="Output RGB image")
|
| 196 |
+
xyz_ouput = gr.Image(interactive=False, label="Output CCM image")
|
| 197 |
+
|
| 198 |
+
output_model = gr.Model3D(
|
| 199 |
+
label="Output GLB",
|
| 200 |
+
interactive=False,
|
| 201 |
+
)
|
| 202 |
+
gr.Markdown("Note: The GLB model shown here has a darker lighting and enlarged UV seams. Download for correct results.")
|
| 203 |
+
output_obj = gr.File(interactive=False, label="Output OBJ")
|
| 204 |
+
|
| 205 |
+
inputs = [
|
| 206 |
+
processed_image,
|
| 207 |
+
seed,
|
| 208 |
+
guidance_scale,
|
| 209 |
+
step,
|
| 210 |
+
]
|
| 211 |
+
outputs = [
|
| 212 |
+
image_output,
|
| 213 |
+
xyz_ouput,
|
| 214 |
+
output_model,
|
| 215 |
+
output_obj,
|
| 216 |
+
]
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
text_button.click(fn=check_input_image, inputs=[image_input]).success(
|
| 220 |
+
fn=preprocess_image,
|
| 221 |
+
inputs=[image_input, background_choice, foreground_ratio, back_groud_color],
|
| 222 |
+
outputs=[processed_image],
|
| 223 |
+
).success(
|
| 224 |
+
fn=gen_image,
|
| 225 |
+
inputs=inputs,
|
| 226 |
+
outputs=outputs,
|
| 227 |
+
)
|
| 228 |
+
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|