Spaces:
Runtime error
Runtime error
Upload imagedream/ldm/models/diffusion/ddim.py with huggingface_hub
Browse files- imagedream/ldm/models/diffusion/ddim.py +430 -430
imagedream/ldm/models/diffusion/ddim.py
CHANGED
@@ -1,430 +1,430 @@
|
|
1 |
-
"""SAMPLING ONLY."""
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import numpy as np
|
5 |
-
from tqdm import tqdm
|
6 |
-
from functools import partial
|
7 |
-
|
8 |
-
from ...modules.diffusionmodules.util import (
|
9 |
-
make_ddim_sampling_parameters,
|
10 |
-
make_ddim_timesteps,
|
11 |
-
noise_like,
|
12 |
-
extract_into_tensor,
|
13 |
-
)
|
14 |
-
|
15 |
-
|
16 |
-
class DDIMSampler(object):
|
17 |
-
def __init__(self, model, schedule="linear", **kwargs):
|
18 |
-
super().__init__()
|
19 |
-
self.model = model
|
20 |
-
self.ddpm_num_timesteps = model.num_timesteps
|
21 |
-
self.schedule = schedule
|
22 |
-
|
23 |
-
def register_buffer(self, name, attr):
|
24 |
-
if type(attr) == torch.Tensor:
|
25 |
-
if attr.device != torch.device("cuda"):
|
26 |
-
attr = attr.to(torch.device("cuda"))
|
27 |
-
setattr(self, name, attr)
|
28 |
-
|
29 |
-
def make_schedule(
|
30 |
-
self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True
|
31 |
-
):
|
32 |
-
self.ddim_timesteps = make_ddim_timesteps(
|
33 |
-
ddim_discr_method=ddim_discretize,
|
34 |
-
num_ddim_timesteps=ddim_num_steps,
|
35 |
-
num_ddpm_timesteps=self.ddpm_num_timesteps,
|
36 |
-
verbose=verbose,
|
37 |
-
)
|
38 |
-
alphas_cumprod = self.model.alphas_cumprod
|
39 |
-
assert (
|
40 |
-
alphas_cumprod.shape[0] == self.ddpm_num_timesteps
|
41 |
-
), "alphas have to be defined for each timestep"
|
42 |
-
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
43 |
-
|
44 |
-
self.register_buffer("betas", to_torch(self.model.betas))
|
45 |
-
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
46 |
-
self.register_buffer(
|
47 |
-
"alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev)
|
48 |
-
)
|
49 |
-
|
50 |
-
# calculations for diffusion q(x_t | x_{t-1}) and others
|
51 |
-
self.register_buffer(
|
52 |
-
"sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu()))
|
53 |
-
)
|
54 |
-
self.register_buffer(
|
55 |
-
"sqrt_one_minus_alphas_cumprod",
|
56 |
-
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
|
57 |
-
)
|
58 |
-
self.register_buffer(
|
59 |
-
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu()))
|
60 |
-
)
|
61 |
-
self.register_buffer(
|
62 |
-
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu()))
|
63 |
-
)
|
64 |
-
self.register_buffer(
|
65 |
-
"sqrt_recipm1_alphas_cumprod",
|
66 |
-
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
|
67 |
-
)
|
68 |
-
|
69 |
-
# ddim sampling parameters
|
70 |
-
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
|
71 |
-
alphacums=alphas_cumprod.cpu(),
|
72 |
-
ddim_timesteps=self.ddim_timesteps,
|
73 |
-
eta=ddim_eta,
|
74 |
-
verbose=verbose,
|
75 |
-
)
|
76 |
-
self.register_buffer("ddim_sigmas", ddim_sigmas)
|
77 |
-
self.register_buffer("ddim_alphas", ddim_alphas)
|
78 |
-
self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
|
79 |
-
self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
|
80 |
-
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
81 |
-
(1 - self.alphas_cumprod_prev)
|
82 |
-
/ (1 - self.alphas_cumprod)
|
83 |
-
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
|
84 |
-
)
|
85 |
-
self.register_buffer(
|
86 |
-
"ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps
|
87 |
-
)
|
88 |
-
|
89 |
-
@torch.no_grad()
|
90 |
-
def sample(
|
91 |
-
self,
|
92 |
-
S,
|
93 |
-
batch_size,
|
94 |
-
shape,
|
95 |
-
conditioning=None,
|
96 |
-
callback=None,
|
97 |
-
normals_sequence=None,
|
98 |
-
img_callback=None,
|
99 |
-
quantize_x0=False,
|
100 |
-
eta=0.0,
|
101 |
-
mask=None,
|
102 |
-
x0=None,
|
103 |
-
temperature=1.0,
|
104 |
-
noise_dropout=0.0,
|
105 |
-
score_corrector=None,
|
106 |
-
corrector_kwargs=None,
|
107 |
-
verbose=True,
|
108 |
-
x_T=None,
|
109 |
-
log_every_t=100,
|
110 |
-
unconditional_guidance_scale=1.0,
|
111 |
-
unconditional_conditioning=None,
|
112 |
-
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
113 |
-
**kwargs,
|
114 |
-
):
|
115 |
-
if conditioning is not None:
|
116 |
-
if isinstance(conditioning, dict):
|
117 |
-
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
118 |
-
if cbs != batch_size:
|
119 |
-
print(
|
120 |
-
f"Warning: Got {cbs} conditionings but batch-size is {batch_size}"
|
121 |
-
)
|
122 |
-
else:
|
123 |
-
if conditioning.shape[0] != batch_size:
|
124 |
-
print(
|
125 |
-
f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}"
|
126 |
-
)
|
127 |
-
|
128 |
-
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
129 |
-
# sampling
|
130 |
-
C, H, W = shape
|
131 |
-
size = (batch_size, C, H, W)
|
132 |
-
|
133 |
-
samples, intermediates = self.ddim_sampling(
|
134 |
-
conditioning,
|
135 |
-
size,
|
136 |
-
callback=callback,
|
137 |
-
img_callback=img_callback,
|
138 |
-
quantize_denoised=quantize_x0,
|
139 |
-
mask=mask,
|
140 |
-
x0=x0,
|
141 |
-
ddim_use_original_steps=False,
|
142 |
-
noise_dropout=noise_dropout,
|
143 |
-
temperature=temperature,
|
144 |
-
score_corrector=score_corrector,
|
145 |
-
corrector_kwargs=corrector_kwargs,
|
146 |
-
x_T=x_T,
|
147 |
-
log_every_t=log_every_t,
|
148 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
149 |
-
unconditional_conditioning=unconditional_conditioning,
|
150 |
-
**kwargs,
|
151 |
-
)
|
152 |
-
return samples, intermediates
|
153 |
-
|
154 |
-
@torch.no_grad()
|
155 |
-
def ddim_sampling(
|
156 |
-
self,
|
157 |
-
cond,
|
158 |
-
shape,
|
159 |
-
x_T=None,
|
160 |
-
ddim_use_original_steps=False,
|
161 |
-
callback=None,
|
162 |
-
timesteps=None,
|
163 |
-
quantize_denoised=False,
|
164 |
-
mask=None,
|
165 |
-
x0=None,
|
166 |
-
img_callback=None,
|
167 |
-
log_every_t=100,
|
168 |
-
temperature=1.0,
|
169 |
-
noise_dropout=0.0,
|
170 |
-
score_corrector=None,
|
171 |
-
corrector_kwargs=None,
|
172 |
-
unconditional_guidance_scale=1.0,
|
173 |
-
unconditional_conditioning=None,
|
174 |
-
**kwargs,
|
175 |
-
):
|
176 |
-
"""
|
177 |
-
when inference time: all values of parameter
|
178 |
-
cond.keys(): dict_keys(['context', 'camera', 'num_frames', 'ip', 'ip_img'])
|
179 |
-
shape: (5, 4, 32, 32)
|
180 |
-
x_T: None
|
181 |
-
ddim_use_original_steps: False
|
182 |
-
timesteps: None
|
183 |
-
callback: None
|
184 |
-
quantize_denoised: False
|
185 |
-
mask: None
|
186 |
-
image_callback: None
|
187 |
-
log_every_t: 100
|
188 |
-
temperature: 1.0
|
189 |
-
noise_dropout: 0.0
|
190 |
-
score_corrector: None
|
191 |
-
corrector_kwargs: None
|
192 |
-
unconditional_guidance_scale: 5
|
193 |
-
unconditional_conditioning.keys(): dict_keys(['context', 'camera', 'num_frames', 'ip', 'ip_img'])
|
194 |
-
kwargs: {}
|
195 |
-
"""
|
196 |
-
device = self.model.betas.device
|
197 |
-
b = shape[0]
|
198 |
-
if x_T is None:
|
199 |
-
img = torch.randn(shape, device=device) # shape: torch.Size([5, 4, 32, 32]) mean: -0.00, std: 1.00, min: -3.64, max: 3.94
|
200 |
-
else:
|
201 |
-
img = x_T
|
202 |
-
|
203 |
-
if timesteps is None: # equal with set time step in hf
|
204 |
-
timesteps = (
|
205 |
-
self.ddpm_num_timesteps
|
206 |
-
if ddim_use_original_steps
|
207 |
-
else self.ddim_timesteps
|
208 |
-
)
|
209 |
-
elif timesteps is not None and not ddim_use_original_steps:
|
210 |
-
subset_end = (
|
211 |
-
int(
|
212 |
-
min(timesteps / self.ddim_timesteps.shape[0], 1)
|
213 |
-
* self.ddim_timesteps.shape[0]
|
214 |
-
)
|
215 |
-
- 1
|
216 |
-
)
|
217 |
-
timesteps = self.ddim_timesteps[:subset_end]
|
218 |
-
|
219 |
-
intermediates = {"x_inter": [img], "pred_x0": [img]}
|
220 |
-
time_range = ( # reversed timesteps
|
221 |
-
reversed(range(0, timesteps))
|
222 |
-
if ddim_use_original_steps
|
223 |
-
else np.flip(timesteps)
|
224 |
-
)
|
225 |
-
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
226 |
-
iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps)
|
227 |
-
for i, step in enumerate(iterator):
|
228 |
-
index = total_steps - i - 1
|
229 |
-
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
230 |
-
|
231 |
-
if mask is not None:
|
232 |
-
assert x0 is not None
|
233 |
-
img_orig = self.model.q_sample(
|
234 |
-
x0, ts
|
235 |
-
) # TODO: deterministic forward pass?
|
236 |
-
img = img_orig * mask + (1.0 - mask) * img
|
237 |
-
|
238 |
-
outs = self.p_sample_ddim(
|
239 |
-
img,
|
240 |
-
cond,
|
241 |
-
ts,
|
242 |
-
index=index,
|
243 |
-
use_original_steps=ddim_use_original_steps,
|
244 |
-
quantize_denoised=quantize_denoised,
|
245 |
-
temperature=temperature,
|
246 |
-
noise_dropout=noise_dropout,
|
247 |
-
score_corrector=score_corrector,
|
248 |
-
corrector_kwargs=corrector_kwargs,
|
249 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
250 |
-
unconditional_conditioning=unconditional_conditioning,
|
251 |
-
**kwargs,
|
252 |
-
)
|
253 |
-
img, pred_x0 = outs
|
254 |
-
if callback:
|
255 |
-
callback(i)
|
256 |
-
if img_callback:
|
257 |
-
img_callback(pred_x0, i)
|
258 |
-
|
259 |
-
if index % log_every_t == 0 or index == total_steps - 1:
|
260 |
-
intermediates["x_inter"].append(img)
|
261 |
-
intermediates["pred_x0"].append(pred_x0)
|
262 |
-
|
263 |
-
return img, intermediates
|
264 |
-
|
265 |
-
@torch.no_grad()
|
266 |
-
def p_sample_ddim(
|
267 |
-
self,
|
268 |
-
x,
|
269 |
-
c,
|
270 |
-
t,
|
271 |
-
index,
|
272 |
-
repeat_noise=False,
|
273 |
-
use_original_steps=False,
|
274 |
-
quantize_denoised=False,
|
275 |
-
temperature=1.0,
|
276 |
-
noise_dropout=0.0,
|
277 |
-
score_corrector=None,
|
278 |
-
corrector_kwargs=None,
|
279 |
-
unconditional_guidance_scale=1.0,
|
280 |
-
unconditional_conditioning=None,
|
281 |
-
dynamic_threshold=None,
|
282 |
-
**kwargs,
|
283 |
-
):
|
284 |
-
b, *_, device = *x.shape, x.device
|
285 |
-
|
286 |
-
if unconditional_conditioning is None or unconditional_guidance_scale == 1.0:
|
287 |
-
model_output = self.model.apply_model(x, t, c)
|
288 |
-
else:
|
289 |
-
x_in = torch.cat([x] * 2)
|
290 |
-
t_in = torch.cat([t] * 2)
|
291 |
-
if isinstance(c, dict):
|
292 |
-
assert isinstance(unconditional_conditioning, dict)
|
293 |
-
c_in = dict()
|
294 |
-
for k in c:
|
295 |
-
if isinstance(c[k], list):
|
296 |
-
c_in[k] = [
|
297 |
-
torch.cat([unconditional_conditioning[k][i], c[k][i]])
|
298 |
-
for i in range(len(c[k]))
|
299 |
-
]
|
300 |
-
elif isinstance(c[k], torch.Tensor):
|
301 |
-
c_in[k] = torch.cat([unconditional_conditioning[k], c[k]])
|
302 |
-
else:
|
303 |
-
assert c[k] == unconditional_conditioning[k]
|
304 |
-
c_in[k] = c[k]
|
305 |
-
elif isinstance(c, list):
|
306 |
-
c_in = list()
|
307 |
-
assert isinstance(unconditional_conditioning, list)
|
308 |
-
for i in range(len(c)):
|
309 |
-
c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
|
310 |
-
else:
|
311 |
-
c_in = torch.cat([unconditional_conditioning, c])
|
312 |
-
model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
313 |
-
model_output = model_uncond + unconditional_guidance_scale * (
|
314 |
-
model_t - model_uncond
|
315 |
-
)
|
316 |
-
|
317 |
-
|
318 |
-
if self.model.parameterization == "v":
|
319 |
-
print("using v!")
|
320 |
-
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
|
321 |
-
else:
|
322 |
-
e_t = model_output
|
323 |
-
|
324 |
-
if score_corrector is not None:
|
325 |
-
assert self.model.parameterization == "eps", "not implemented"
|
326 |
-
e_t = score_corrector.modify_score(
|
327 |
-
self.model, e_t, x, t, c, **corrector_kwargs
|
328 |
-
)
|
329 |
-
|
330 |
-
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
331 |
-
alphas_prev = (
|
332 |
-
self.model.alphas_cumprod_prev
|
333 |
-
if use_original_steps
|
334 |
-
else self.ddim_alphas_prev
|
335 |
-
)
|
336 |
-
sqrt_one_minus_alphas = (
|
337 |
-
self.model.sqrt_one_minus_alphas_cumprod
|
338 |
-
if use_original_steps
|
339 |
-
else self.ddim_sqrt_one_minus_alphas
|
340 |
-
)
|
341 |
-
sigmas = (
|
342 |
-
self.model.ddim_sigmas_for_original_num_steps
|
343 |
-
if use_original_steps
|
344 |
-
else self.ddim_sigmas
|
345 |
-
)
|
346 |
-
# select parameters corresponding to the currently considered timestep
|
347 |
-
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
348 |
-
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
349 |
-
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
350 |
-
sqrt_one_minus_at = torch.full(
|
351 |
-
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
|
352 |
-
)
|
353 |
-
|
354 |
-
# current prediction for x_0
|
355 |
-
if self.model.parameterization != "v":
|
356 |
-
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
357 |
-
else:
|
358 |
-
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
|
359 |
-
|
360 |
-
if quantize_denoised:
|
361 |
-
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
362 |
-
|
363 |
-
if dynamic_threshold is not None:
|
364 |
-
raise NotImplementedError()
|
365 |
-
|
366 |
-
# direction pointing to x_t
|
367 |
-
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
368 |
-
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
369 |
-
if noise_dropout > 0.0:
|
370 |
-
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
371 |
-
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
372 |
-
return x_prev, pred_x0
|
373 |
-
|
374 |
-
@torch.no_grad()
|
375 |
-
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
376 |
-
# fast, but does not allow for exact reconstruction
|
377 |
-
# t serves as an index to gather the correct alphas
|
378 |
-
if use_original_steps:
|
379 |
-
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
380 |
-
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
381 |
-
else:
|
382 |
-
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
383 |
-
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
384 |
-
|
385 |
-
if noise is None:
|
386 |
-
noise = torch.randn_like(x0)
|
387 |
-
return (
|
388 |
-
extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0
|
389 |
-
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise
|
390 |
-
)
|
391 |
-
|
392 |
-
@torch.no_grad()
|
393 |
-
def decode(
|
394 |
-
self,
|
395 |
-
x_latent,
|
396 |
-
cond,
|
397 |
-
t_start,
|
398 |
-
unconditional_guidance_scale=1.0,
|
399 |
-
unconditional_conditioning=None,
|
400 |
-
use_original_steps=False,
|
401 |
-
**kwargs,
|
402 |
-
):
|
403 |
-
timesteps = (
|
404 |
-
np.arange(self.ddpm_num_timesteps)
|
405 |
-
if use_original_steps
|
406 |
-
else self.ddim_timesteps
|
407 |
-
)
|
408 |
-
timesteps = timesteps[:t_start]
|
409 |
-
|
410 |
-
time_range = np.flip(timesteps)
|
411 |
-
total_steps = timesteps.shape[0]
|
412 |
-
|
413 |
-
iterator = tqdm(time_range, desc="Decoding image", total=total_steps)
|
414 |
-
x_dec = x_latent
|
415 |
-
for i, step in enumerate(iterator):
|
416 |
-
index = total_steps - i - 1
|
417 |
-
ts = torch.full(
|
418 |
-
(x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long
|
419 |
-
)
|
420 |
-
x_dec, _ = self.p_sample_ddim(
|
421 |
-
x_dec,
|
422 |
-
cond,
|
423 |
-
ts,
|
424 |
-
index=index,
|
425 |
-
use_original_steps=use_original_steps,
|
426 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
427 |
-
unconditional_conditioning=unconditional_conditioning,
|
428 |
-
**kwargs,
|
429 |
-
)
|
430 |
-
return x_dec
|
|
|
1 |
+
"""SAMPLING ONLY."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
from ...modules.diffusionmodules.util import (
|
9 |
+
make_ddim_sampling_parameters,
|
10 |
+
make_ddim_timesteps,
|
11 |
+
noise_like,
|
12 |
+
extract_into_tensor,
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
class DDIMSampler(object):
|
17 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
18 |
+
super().__init__()
|
19 |
+
self.model = model
|
20 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
21 |
+
self.schedule = schedule
|
22 |
+
|
23 |
+
def register_buffer(self, name, attr):
|
24 |
+
if type(attr) == torch.Tensor:
|
25 |
+
if attr.device != torch.device("cuda"):
|
26 |
+
attr = attr.to(torch.device("cuda"))
|
27 |
+
setattr(self, name, attr)
|
28 |
+
|
29 |
+
def make_schedule(
|
30 |
+
self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True
|
31 |
+
):
|
32 |
+
self.ddim_timesteps = make_ddim_timesteps(
|
33 |
+
ddim_discr_method=ddim_discretize,
|
34 |
+
num_ddim_timesteps=ddim_num_steps,
|
35 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,
|
36 |
+
verbose=verbose,
|
37 |
+
)
|
38 |
+
alphas_cumprod = self.model.alphas_cumprod
|
39 |
+
assert (
|
40 |
+
alphas_cumprod.shape[0] == self.ddpm_num_timesteps
|
41 |
+
), "alphas have to be defined for each timestep"
|
42 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
43 |
+
|
44 |
+
self.register_buffer("betas", to_torch(self.model.betas))
|
45 |
+
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
46 |
+
self.register_buffer(
|
47 |
+
"alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev)
|
48 |
+
)
|
49 |
+
|
50 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
51 |
+
self.register_buffer(
|
52 |
+
"sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu()))
|
53 |
+
)
|
54 |
+
self.register_buffer(
|
55 |
+
"sqrt_one_minus_alphas_cumprod",
|
56 |
+
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
|
57 |
+
)
|
58 |
+
self.register_buffer(
|
59 |
+
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu()))
|
60 |
+
)
|
61 |
+
self.register_buffer(
|
62 |
+
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu()))
|
63 |
+
)
|
64 |
+
self.register_buffer(
|
65 |
+
"sqrt_recipm1_alphas_cumprod",
|
66 |
+
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
|
67 |
+
)
|
68 |
+
|
69 |
+
# ddim sampling parameters
|
70 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
|
71 |
+
alphacums=alphas_cumprod.cpu(),
|
72 |
+
ddim_timesteps=self.ddim_timesteps,
|
73 |
+
eta=ddim_eta,
|
74 |
+
verbose=verbose,
|
75 |
+
)
|
76 |
+
self.register_buffer("ddim_sigmas", ddim_sigmas)
|
77 |
+
self.register_buffer("ddim_alphas", ddim_alphas)
|
78 |
+
self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
|
79 |
+
self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
|
80 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
81 |
+
(1 - self.alphas_cumprod_prev)
|
82 |
+
/ (1 - self.alphas_cumprod)
|
83 |
+
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
|
84 |
+
)
|
85 |
+
self.register_buffer(
|
86 |
+
"ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps
|
87 |
+
)
|
88 |
+
|
89 |
+
@torch.no_grad()
|
90 |
+
def sample(
|
91 |
+
self,
|
92 |
+
S,
|
93 |
+
batch_size,
|
94 |
+
shape,
|
95 |
+
conditioning=None,
|
96 |
+
callback=None,
|
97 |
+
normals_sequence=None,
|
98 |
+
img_callback=None,
|
99 |
+
quantize_x0=False,
|
100 |
+
eta=0.0,
|
101 |
+
mask=None,
|
102 |
+
x0=None,
|
103 |
+
temperature=1.0,
|
104 |
+
noise_dropout=0.0,
|
105 |
+
score_corrector=None,
|
106 |
+
corrector_kwargs=None,
|
107 |
+
verbose=True,
|
108 |
+
x_T=None,
|
109 |
+
log_every_t=100,
|
110 |
+
unconditional_guidance_scale=1.0,
|
111 |
+
unconditional_conditioning=None,
|
112 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
113 |
+
**kwargs,
|
114 |
+
):
|
115 |
+
if conditioning is not None:
|
116 |
+
if isinstance(conditioning, dict):
|
117 |
+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
118 |
+
if cbs != batch_size:
|
119 |
+
print(
|
120 |
+
f"Warning: Got {cbs} conditionings but batch-size is {batch_size}"
|
121 |
+
)
|
122 |
+
else:
|
123 |
+
if conditioning.shape[0] != batch_size:
|
124 |
+
print(
|
125 |
+
f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}"
|
126 |
+
)
|
127 |
+
|
128 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
129 |
+
# sampling
|
130 |
+
C, H, W = shape
|
131 |
+
size = (batch_size, C, H, W)
|
132 |
+
|
133 |
+
samples, intermediates = self.ddim_sampling(
|
134 |
+
conditioning,
|
135 |
+
size,
|
136 |
+
callback=callback,
|
137 |
+
img_callback=img_callback,
|
138 |
+
quantize_denoised=quantize_x0,
|
139 |
+
mask=mask,
|
140 |
+
x0=x0,
|
141 |
+
ddim_use_original_steps=False,
|
142 |
+
noise_dropout=noise_dropout,
|
143 |
+
temperature=temperature,
|
144 |
+
score_corrector=score_corrector,
|
145 |
+
corrector_kwargs=corrector_kwargs,
|
146 |
+
x_T=x_T,
|
147 |
+
log_every_t=log_every_t,
|
148 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
149 |
+
unconditional_conditioning=unconditional_conditioning,
|
150 |
+
**kwargs,
|
151 |
+
)
|
152 |
+
return samples, intermediates
|
153 |
+
|
154 |
+
@torch.no_grad()
|
155 |
+
def ddim_sampling(
|
156 |
+
self,
|
157 |
+
cond,
|
158 |
+
shape,
|
159 |
+
x_T=None,
|
160 |
+
ddim_use_original_steps=False,
|
161 |
+
callback=None,
|
162 |
+
timesteps=None,
|
163 |
+
quantize_denoised=False,
|
164 |
+
mask=None,
|
165 |
+
x0=None,
|
166 |
+
img_callback=None,
|
167 |
+
log_every_t=100,
|
168 |
+
temperature=1.0,
|
169 |
+
noise_dropout=0.0,
|
170 |
+
score_corrector=None,
|
171 |
+
corrector_kwargs=None,
|
172 |
+
unconditional_guidance_scale=1.0,
|
173 |
+
unconditional_conditioning=None,
|
174 |
+
**kwargs,
|
175 |
+
):
|
176 |
+
"""
|
177 |
+
when inference time: all values of parameter
|
178 |
+
cond.keys(): dict_keys(['context', 'camera', 'num_frames', 'ip', 'ip_img'])
|
179 |
+
shape: (5, 4, 32, 32)
|
180 |
+
x_T: None
|
181 |
+
ddim_use_original_steps: False
|
182 |
+
timesteps: None
|
183 |
+
callback: None
|
184 |
+
quantize_denoised: False
|
185 |
+
mask: None
|
186 |
+
image_callback: None
|
187 |
+
log_every_t: 100
|
188 |
+
temperature: 1.0
|
189 |
+
noise_dropout: 0.0
|
190 |
+
score_corrector: None
|
191 |
+
corrector_kwargs: None
|
192 |
+
unconditional_guidance_scale: 5
|
193 |
+
unconditional_conditioning.keys(): dict_keys(['context', 'camera', 'num_frames', 'ip', 'ip_img'])
|
194 |
+
kwargs: {}
|
195 |
+
"""
|
196 |
+
device = self.model.betas.device
|
197 |
+
b = shape[0]
|
198 |
+
if x_T is None:
|
199 |
+
img = torch.randn(shape, device=device) # shape: torch.Size([5, 4, 32, 32]) mean: -0.00, std: 1.00, min: -3.64, max: 3.94
|
200 |
+
else:
|
201 |
+
img = x_T
|
202 |
+
|
203 |
+
if timesteps is None: # equal with set time step in hf
|
204 |
+
timesteps = (
|
205 |
+
self.ddpm_num_timesteps
|
206 |
+
if ddim_use_original_steps
|
207 |
+
else self.ddim_timesteps
|
208 |
+
)
|
209 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
210 |
+
subset_end = (
|
211 |
+
int(
|
212 |
+
min(timesteps / self.ddim_timesteps.shape[0], 1)
|
213 |
+
* self.ddim_timesteps.shape[0]
|
214 |
+
)
|
215 |
+
- 1
|
216 |
+
)
|
217 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
218 |
+
|
219 |
+
intermediates = {"x_inter": [img], "pred_x0": [img]}
|
220 |
+
time_range = ( # reversed timesteps
|
221 |
+
reversed(range(0, timesteps))
|
222 |
+
if ddim_use_original_steps
|
223 |
+
else np.flip(timesteps)
|
224 |
+
)
|
225 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
226 |
+
iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps)
|
227 |
+
for i, step in enumerate(iterator):
|
228 |
+
index = total_steps - i - 1
|
229 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
230 |
+
|
231 |
+
if mask is not None:
|
232 |
+
assert x0 is not None
|
233 |
+
img_orig = self.model.q_sample(
|
234 |
+
x0, ts
|
235 |
+
) # TODO: deterministic forward pass?
|
236 |
+
img = img_orig * mask + (1.0 - mask) * img
|
237 |
+
|
238 |
+
outs = self.p_sample_ddim(
|
239 |
+
img,
|
240 |
+
cond,
|
241 |
+
ts,
|
242 |
+
index=index,
|
243 |
+
use_original_steps=ddim_use_original_steps,
|
244 |
+
quantize_denoised=quantize_denoised,
|
245 |
+
temperature=temperature,
|
246 |
+
noise_dropout=noise_dropout,
|
247 |
+
score_corrector=score_corrector,
|
248 |
+
corrector_kwargs=corrector_kwargs,
|
249 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
250 |
+
unconditional_conditioning=unconditional_conditioning,
|
251 |
+
**kwargs,
|
252 |
+
)
|
253 |
+
img, pred_x0 = outs
|
254 |
+
if callback:
|
255 |
+
callback(i)
|
256 |
+
if img_callback:
|
257 |
+
img_callback(pred_x0, i)
|
258 |
+
|
259 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
260 |
+
intermediates["x_inter"].append(img)
|
261 |
+
intermediates["pred_x0"].append(pred_x0)
|
262 |
+
|
263 |
+
return img, intermediates
|
264 |
+
|
265 |
+
@torch.no_grad()
|
266 |
+
def p_sample_ddim(
|
267 |
+
self,
|
268 |
+
x,
|
269 |
+
c,
|
270 |
+
t,
|
271 |
+
index,
|
272 |
+
repeat_noise=False,
|
273 |
+
use_original_steps=False,
|
274 |
+
quantize_denoised=False,
|
275 |
+
temperature=1.0,
|
276 |
+
noise_dropout=0.0,
|
277 |
+
score_corrector=None,
|
278 |
+
corrector_kwargs=None,
|
279 |
+
unconditional_guidance_scale=1.0,
|
280 |
+
unconditional_conditioning=None,
|
281 |
+
dynamic_threshold=None,
|
282 |
+
**kwargs,
|
283 |
+
):
|
284 |
+
b, *_, device = *x.shape, x.device
|
285 |
+
|
286 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.0:
|
287 |
+
model_output = self.model.apply_model(x, t, c)
|
288 |
+
else:
|
289 |
+
x_in = torch.cat([x] * 2)
|
290 |
+
t_in = torch.cat([t] * 2)
|
291 |
+
if isinstance(c, dict):
|
292 |
+
assert isinstance(unconditional_conditioning, dict)
|
293 |
+
c_in = dict()
|
294 |
+
for k in c:
|
295 |
+
if isinstance(c[k], list):
|
296 |
+
c_in[k] = [
|
297 |
+
torch.cat([unconditional_conditioning[k][i], c[k][i]])
|
298 |
+
for i in range(len(c[k]))
|
299 |
+
]
|
300 |
+
elif isinstance(c[k], torch.Tensor):
|
301 |
+
c_in[k] = torch.cat([unconditional_conditioning[k], c[k]])
|
302 |
+
else:
|
303 |
+
assert c[k] == unconditional_conditioning[k]
|
304 |
+
c_in[k] = c[k]
|
305 |
+
elif isinstance(c, list):
|
306 |
+
c_in = list()
|
307 |
+
assert isinstance(unconditional_conditioning, list)
|
308 |
+
for i in range(len(c)):
|
309 |
+
c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
|
310 |
+
else:
|
311 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
312 |
+
model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
313 |
+
model_output = model_uncond + unconditional_guidance_scale * (
|
314 |
+
model_t - model_uncond
|
315 |
+
)
|
316 |
+
|
317 |
+
|
318 |
+
if self.model.parameterization == "v":
|
319 |
+
print("using v!")
|
320 |
+
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
|
321 |
+
else:
|
322 |
+
e_t = model_output
|
323 |
+
|
324 |
+
if score_corrector is not None:
|
325 |
+
assert self.model.parameterization == "eps", "not implemented"
|
326 |
+
e_t = score_corrector.modify_score(
|
327 |
+
self.model, e_t, x, t, c, **corrector_kwargs
|
328 |
+
)
|
329 |
+
|
330 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
331 |
+
alphas_prev = (
|
332 |
+
self.model.alphas_cumprod_prev
|
333 |
+
if use_original_steps
|
334 |
+
else self.ddim_alphas_prev
|
335 |
+
)
|
336 |
+
sqrt_one_minus_alphas = (
|
337 |
+
self.model.sqrt_one_minus_alphas_cumprod
|
338 |
+
if use_original_steps
|
339 |
+
else self.ddim_sqrt_one_minus_alphas
|
340 |
+
)
|
341 |
+
sigmas = (
|
342 |
+
self.model.ddim_sigmas_for_original_num_steps
|
343 |
+
if use_original_steps
|
344 |
+
else self.ddim_sigmas
|
345 |
+
)
|
346 |
+
# select parameters corresponding to the currently considered timestep
|
347 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
348 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
349 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
350 |
+
sqrt_one_minus_at = torch.full(
|
351 |
+
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
|
352 |
+
)
|
353 |
+
|
354 |
+
# current prediction for x_0
|
355 |
+
if self.model.parameterization != "v":
|
356 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
357 |
+
else:
|
358 |
+
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
|
359 |
+
|
360 |
+
if quantize_denoised:
|
361 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
362 |
+
|
363 |
+
if dynamic_threshold is not None:
|
364 |
+
raise NotImplementedError()
|
365 |
+
|
366 |
+
# direction pointing to x_t
|
367 |
+
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
368 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
369 |
+
if noise_dropout > 0.0:
|
370 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
371 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
372 |
+
return x_prev, pred_x0
|
373 |
+
|
374 |
+
@torch.no_grad()
|
375 |
+
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
376 |
+
# fast, but does not allow for exact reconstruction
|
377 |
+
# t serves as an index to gather the correct alphas
|
378 |
+
if use_original_steps:
|
379 |
+
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
380 |
+
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
381 |
+
else:
|
382 |
+
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
383 |
+
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
384 |
+
|
385 |
+
if noise is None:
|
386 |
+
noise = torch.randn_like(x0)
|
387 |
+
return (
|
388 |
+
extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0
|
389 |
+
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise
|
390 |
+
)
|
391 |
+
|
392 |
+
@torch.no_grad()
|
393 |
+
def decode(
|
394 |
+
self,
|
395 |
+
x_latent,
|
396 |
+
cond,
|
397 |
+
t_start,
|
398 |
+
unconditional_guidance_scale=1.0,
|
399 |
+
unconditional_conditioning=None,
|
400 |
+
use_original_steps=False,
|
401 |
+
**kwargs,
|
402 |
+
):
|
403 |
+
timesteps = (
|
404 |
+
np.arange(self.ddpm_num_timesteps)
|
405 |
+
if use_original_steps
|
406 |
+
else self.ddim_timesteps
|
407 |
+
)
|
408 |
+
timesteps = timesteps[:t_start]
|
409 |
+
|
410 |
+
time_range = np.flip(timesteps)
|
411 |
+
total_steps = timesteps.shape[0]
|
412 |
+
|
413 |
+
iterator = tqdm(time_range, desc="Decoding image", total=total_steps)
|
414 |
+
x_dec = x_latent
|
415 |
+
for i, step in enumerate(iterator):
|
416 |
+
index = total_steps - i - 1
|
417 |
+
ts = torch.full(
|
418 |
+
(x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long
|
419 |
+
)
|
420 |
+
x_dec, _ = self.p_sample_ddim(
|
421 |
+
x_dec,
|
422 |
+
cond,
|
423 |
+
ts,
|
424 |
+
index=index,
|
425 |
+
use_original_steps=use_original_steps,
|
426 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
427 |
+
unconditional_conditioning=unconditional_conditioning,
|
428 |
+
**kwargs,
|
429 |
+
)
|
430 |
+
return x_dec
|