Spaces:
Runtime error
Runtime error
Upload util/flexicubes.py with huggingface_hub
Browse files- util/flexicubes.py +579 -0
util/flexicubes.py
ADDED
|
@@ -0,0 +1,579 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
|
| 8 |
+
import torch
|
| 9 |
+
from util.tables import *
|
| 10 |
+
|
| 11 |
+
__all__ = [
|
| 12 |
+
'FlexiCubes'
|
| 13 |
+
]
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class FlexiCubes:
|
| 17 |
+
"""
|
| 18 |
+
This class implements the FlexiCubes method for extracting meshes from scalar fields.
|
| 19 |
+
It maintains a series of lookup tables and indices to support the mesh extraction process.
|
| 20 |
+
FlexiCubes, a differentiable variant of the Dual Marching Cubes (DMC) scheme, enhances
|
| 21 |
+
the geometric fidelity and mesh quality of reconstructed meshes by dynamically adjusting
|
| 22 |
+
the surface representation through gradient-based optimization.
|
| 23 |
+
|
| 24 |
+
During instantiation, the class loads DMC tables from a file and transforms them into
|
| 25 |
+
PyTorch tensors on the specified device.
|
| 26 |
+
|
| 27 |
+
Attributes:
|
| 28 |
+
device (str): Specifies the computational device (default is "cuda").
|
| 29 |
+
dmc_table (torch.Tensor): Dual Marching Cubes (DMC) table that encodes the edges
|
| 30 |
+
associated with each dual vertex in 256 Marching Cubes (MC) configurations.
|
| 31 |
+
num_vd_table (torch.Tensor): Table holding the number of dual vertices in each of
|
| 32 |
+
the 256 MC configurations.
|
| 33 |
+
check_table (torch.Tensor): Table resolving ambiguity in cases C16 and C19
|
| 34 |
+
of the DMC configurations.
|
| 35 |
+
tet_table (torch.Tensor): Lookup table used in tetrahedralizing the isosurface.
|
| 36 |
+
quad_split_1 (torch.Tensor): Indices for splitting a quad into two triangles
|
| 37 |
+
along one diagonal.
|
| 38 |
+
quad_split_2 (torch.Tensor): Alternative indices for splitting a quad into
|
| 39 |
+
two triangles along the other diagonal.
|
| 40 |
+
quad_split_train (torch.Tensor): Indices for splitting a quad into four triangles
|
| 41 |
+
during training by connecting all edges to their midpoints.
|
| 42 |
+
cube_corners (torch.Tensor): Defines the positions of a standard unit cube's
|
| 43 |
+
eight corners in 3D space, ordered starting from the origin (0,0,0),
|
| 44 |
+
moving along the x-axis, then y-axis, and finally z-axis.
|
| 45 |
+
Used as a blueprint for generating a voxel grid.
|
| 46 |
+
cube_corners_idx (torch.Tensor): Cube corners indexed as powers of 2, used
|
| 47 |
+
to retrieve the case id.
|
| 48 |
+
cube_edges (torch.Tensor): Edge connections in a cube, listed in pairs.
|
| 49 |
+
Used to retrieve edge vertices in DMC.
|
| 50 |
+
edge_dir_table (torch.Tensor): A mapping tensor that associates edge indices with
|
| 51 |
+
their corresponding axis. For instance, edge_dir_table[0] = 0 indicates that the
|
| 52 |
+
first edge is oriented along the x-axis.
|
| 53 |
+
dir_faces_table (torch.Tensor): A tensor that maps the corresponding axis of shared edges
|
| 54 |
+
across four adjacent cubes to the shared faces of these cubes. For instance,
|
| 55 |
+
dir_faces_table[0] = [5, 4] implies that for four cubes sharing an edge along
|
| 56 |
+
the x-axis, the first and second cubes share faces indexed as 5 and 4, respectively.
|
| 57 |
+
This tensor is only utilized during isosurface tetrahedralization.
|
| 58 |
+
adj_pairs (torch.Tensor):
|
| 59 |
+
A tensor containing index pairs that correspond to neighboring cubes that share the same edge.
|
| 60 |
+
qef_reg_scale (float):
|
| 61 |
+
The scaling factor applied to the regularization loss to prevent issues with singularity
|
| 62 |
+
when solving the QEF. This parameter is only used when a 'grad_func' is specified.
|
| 63 |
+
weight_scale (float):
|
| 64 |
+
The scale of weights in FlexiCubes. Should be between 0 and 1.
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
def __init__(self, device="cuda", qef_reg_scale=1e-3, weight_scale=0.99):
|
| 68 |
+
|
| 69 |
+
self.device = device
|
| 70 |
+
self.dmc_table = torch.tensor(dmc_table, dtype=torch.long, device=device, requires_grad=False)
|
| 71 |
+
self.num_vd_table = torch.tensor(num_vd_table,
|
| 72 |
+
dtype=torch.long, device=device, requires_grad=False)
|
| 73 |
+
self.check_table = torch.tensor(
|
| 74 |
+
check_table,
|
| 75 |
+
dtype=torch.long, device=device, requires_grad=False)
|
| 76 |
+
|
| 77 |
+
self.tet_table = torch.tensor(tet_table, dtype=torch.long, device=device, requires_grad=False)
|
| 78 |
+
self.quad_split_1 = torch.tensor([0, 1, 2, 0, 2, 3], dtype=torch.long, device=device, requires_grad=False)
|
| 79 |
+
self.quad_split_2 = torch.tensor([0, 1, 3, 3, 1, 2], dtype=torch.long, device=device, requires_grad=False)
|
| 80 |
+
self.quad_split_train = torch.tensor(
|
| 81 |
+
[0, 1, 1, 2, 2, 3, 3, 0], dtype=torch.long, device=device, requires_grad=False)
|
| 82 |
+
|
| 83 |
+
self.cube_corners = torch.tensor([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [
|
| 84 |
+
1, 0, 1], [0, 1, 1], [1, 1, 1]], dtype=torch.float, device=device)
|
| 85 |
+
self.cube_corners_idx = torch.pow(2, torch.arange(8, requires_grad=False))
|
| 86 |
+
self.cube_edges = torch.tensor([0, 1, 1, 5, 4, 5, 0, 4, 2, 3, 3, 7, 6, 7, 2, 6,
|
| 87 |
+
2, 0, 3, 1, 7, 5, 6, 4], dtype=torch.long, device=device, requires_grad=False)
|
| 88 |
+
|
| 89 |
+
self.edge_dir_table = torch.tensor([0, 2, 0, 2, 0, 2, 0, 2, 1, 1, 1, 1],
|
| 90 |
+
dtype=torch.long, device=device)
|
| 91 |
+
self.dir_faces_table = torch.tensor([
|
| 92 |
+
[[5, 4], [3, 2], [4, 5], [2, 3]],
|
| 93 |
+
[[5, 4], [1, 0], [4, 5], [0, 1]],
|
| 94 |
+
[[3, 2], [1, 0], [2, 3], [0, 1]]
|
| 95 |
+
], dtype=torch.long, device=device)
|
| 96 |
+
self.adj_pairs = torch.tensor([0, 1, 1, 3, 3, 2, 2, 0], dtype=torch.long, device=device)
|
| 97 |
+
self.qef_reg_scale = qef_reg_scale
|
| 98 |
+
self.weight_scale = weight_scale
|
| 99 |
+
|
| 100 |
+
def construct_voxel_grid(self, res):
|
| 101 |
+
"""
|
| 102 |
+
Generates a voxel grid based on the specified resolution.
|
| 103 |
+
|
| 104 |
+
Args:
|
| 105 |
+
res (int or list[int]): The resolution of the voxel grid. If an integer
|
| 106 |
+
is provided, it is used for all three dimensions. If a list or tuple
|
| 107 |
+
of 3 integers is provided, they define the resolution for the x,
|
| 108 |
+
y, and z dimensions respectively.
|
| 109 |
+
|
| 110 |
+
Returns:
|
| 111 |
+
(torch.Tensor, torch.Tensor): Returns the vertices and the indices of the
|
| 112 |
+
cube corners (index into vertices) of the constructed voxel grid.
|
| 113 |
+
The vertices are centered at the origin, with the length of each
|
| 114 |
+
dimension in the grid being one.
|
| 115 |
+
"""
|
| 116 |
+
base_cube_f = torch.arange(8).to(self.device)
|
| 117 |
+
if isinstance(res, int):
|
| 118 |
+
res = (res, res, res)
|
| 119 |
+
voxel_grid_template = torch.ones(res, device=self.device)
|
| 120 |
+
|
| 121 |
+
res = torch.tensor([res], dtype=torch.float, device=self.device)
|
| 122 |
+
coords = torch.nonzero(voxel_grid_template).float() / res # N, 3
|
| 123 |
+
verts = (self.cube_corners.unsqueeze(0) / res + coords.unsqueeze(1)).reshape(-1, 3)
|
| 124 |
+
cubes = (base_cube_f.unsqueeze(0) +
|
| 125 |
+
torch.arange(coords.shape[0], device=self.device).unsqueeze(1) * 8).reshape(-1)
|
| 126 |
+
|
| 127 |
+
verts_rounded = torch.round(verts * 10**5) / (10**5)
|
| 128 |
+
verts_unique, inverse_indices = torch.unique(verts_rounded, dim=0, return_inverse=True)
|
| 129 |
+
cubes = inverse_indices[cubes.reshape(-1)].reshape(-1, 8)
|
| 130 |
+
|
| 131 |
+
return verts_unique - 0.5, cubes
|
| 132 |
+
|
| 133 |
+
def __call__(self, x_nx3, s_n, cube_fx8, res, beta_fx12=None, alpha_fx8=None,
|
| 134 |
+
gamma_f=None, training=False, output_tetmesh=False, grad_func=None):
|
| 135 |
+
r"""
|
| 136 |
+
Main function for mesh extraction from scalar field using FlexiCubes. This function converts
|
| 137 |
+
discrete signed distance fields, encoded on voxel grids and additional per-cube parameters,
|
| 138 |
+
to triangle or tetrahedral meshes using a differentiable operation as described in
|
| 139 |
+
`Flexible Isosurface Extraction for Gradient-Based Mesh Optimization`_. FlexiCubes enhances
|
| 140 |
+
mesh quality and geometric fidelity by adjusting the surface representation based on gradient
|
| 141 |
+
optimization. The output surface is differentiable with respect to the input vertex positions,
|
| 142 |
+
scalar field values, and weight parameters.
|
| 143 |
+
|
| 144 |
+
If you intend to extract a surface mesh from a fixed Signed Distance Field without the
|
| 145 |
+
optimization of parameters, it is suggested to provide the "grad_func" which should
|
| 146 |
+
return the surface gradient at any given 3D position. When grad_func is provided, the process
|
| 147 |
+
to determine the dual vertex position adapts to solve a Quadratic Error Function (QEF), as
|
| 148 |
+
described in the `Manifold Dual Contouring`_ paper, and employs an smart splitting strategy.
|
| 149 |
+
Please note, this approach is non-differentiable.
|
| 150 |
+
|
| 151 |
+
For more details and example usage in optimization, refer to the
|
| 152 |
+
`Flexible Isosurface Extraction for Gradient-Based Mesh Optimization`_ SIGGRAPH 2023 paper.
|
| 153 |
+
|
| 154 |
+
Args:
|
| 155 |
+
x_nx3 (torch.Tensor): Coordinates of the voxel grid vertices, can be deformed.
|
| 156 |
+
s_n (torch.Tensor): Scalar field values at each vertex of the voxel grid. Negative values
|
| 157 |
+
denote that the corresponding vertex resides inside the isosurface. This affects
|
| 158 |
+
the directions of the extracted triangle faces and volume to be tetrahedralized.
|
| 159 |
+
cube_fx8 (torch.Tensor): Indices of 8 vertices for each cube in the voxel grid.
|
| 160 |
+
res (int or list[int]): The resolution of the voxel grid. If an integer is provided, it
|
| 161 |
+
is used for all three dimensions. If a list or tuple of 3 integers is provided, they
|
| 162 |
+
specify the resolution for the x, y, and z dimensions respectively.
|
| 163 |
+
beta_fx12 (torch.Tensor, optional): Weight parameters for the cube edges to adjust dual
|
| 164 |
+
vertices positioning. Defaults to uniform value for all edges.
|
| 165 |
+
alpha_fx8 (torch.Tensor, optional): Weight parameters for the cube corners to adjust dual
|
| 166 |
+
vertices positioning. Defaults to uniform value for all vertices.
|
| 167 |
+
gamma_f (torch.Tensor, optional): Weight parameters to control the splitting of
|
| 168 |
+
quadrilaterals into triangles. Defaults to uniform value for all cubes.
|
| 169 |
+
training (bool, optional): If set to True, applies differentiable quad splitting for
|
| 170 |
+
training. Defaults to False.
|
| 171 |
+
output_tetmesh (bool, optional): If set to True, outputs a tetrahedral mesh, otherwise,
|
| 172 |
+
outputs a triangular mesh. Defaults to False.
|
| 173 |
+
grad_func (callable, optional): A function to compute the surface gradient at specified
|
| 174 |
+
3D positions (input: Nx3 positions). The function should return gradients as an Nx3
|
| 175 |
+
tensor. If None, the original FlexiCubes algorithm is utilized. Defaults to None.
|
| 176 |
+
|
| 177 |
+
Returns:
|
| 178 |
+
(torch.Tensor, torch.LongTensor, torch.Tensor): Tuple containing:
|
| 179 |
+
- Vertices for the extracted triangular/tetrahedral mesh.
|
| 180 |
+
- Faces for the extracted triangular/tetrahedral mesh.
|
| 181 |
+
- Regularizer L_dev, computed per dual vertex.
|
| 182 |
+
|
| 183 |
+
.. _Flexible Isosurface Extraction for Gradient-Based Mesh Optimization:
|
| 184 |
+
https://research.nvidia.com/labs/toronto-ai/flexicubes/
|
| 185 |
+
.. _Manifold Dual Contouring:
|
| 186 |
+
https://people.engr.tamu.edu/schaefer/research/dualsimp_tvcg.pdf
|
| 187 |
+
"""
|
| 188 |
+
|
| 189 |
+
surf_cubes, occ_fx8 = self._identify_surf_cubes(s_n, cube_fx8)
|
| 190 |
+
if surf_cubes.sum() == 0:
|
| 191 |
+
return torch.zeros(
|
| 192 |
+
(0, 3),
|
| 193 |
+
device=self.device), torch.zeros(
|
| 194 |
+
(0, 4),
|
| 195 |
+
dtype=torch.long, device=self.device) if output_tetmesh else torch.zeros(
|
| 196 |
+
(0, 3),
|
| 197 |
+
dtype=torch.long, device=self.device), torch.zeros(
|
| 198 |
+
(0),
|
| 199 |
+
device=self.device)
|
| 200 |
+
beta_fx12, alpha_fx8, gamma_f = self._normalize_weights(beta_fx12, alpha_fx8, gamma_f, surf_cubes)
|
| 201 |
+
|
| 202 |
+
case_ids = self._get_case_id(occ_fx8, surf_cubes, res)
|
| 203 |
+
|
| 204 |
+
surf_edges, idx_map, edge_counts, surf_edges_mask = self._identify_surf_edges(s_n, cube_fx8, surf_cubes)
|
| 205 |
+
|
| 206 |
+
vd, L_dev, vd_gamma, vd_idx_map = self._compute_vd(
|
| 207 |
+
x_nx3, cube_fx8[surf_cubes], surf_edges, s_n, case_ids, beta_fx12, alpha_fx8, gamma_f, idx_map, grad_func)
|
| 208 |
+
vertices, faces, s_edges, edge_indices = self._triangulate(
|
| 209 |
+
s_n, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, grad_func)
|
| 210 |
+
if not output_tetmesh:
|
| 211 |
+
return vertices, faces, L_dev
|
| 212 |
+
else:
|
| 213 |
+
vertices, tets = self._tetrahedralize(
|
| 214 |
+
x_nx3, s_n, cube_fx8, vertices, faces, surf_edges, s_edges, vd_idx_map, case_ids, edge_indices,
|
| 215 |
+
surf_cubes, training)
|
| 216 |
+
return vertices, tets, L_dev
|
| 217 |
+
|
| 218 |
+
def _compute_reg_loss(self, vd, ue, edge_group_to_vd, vd_num_edges):
|
| 219 |
+
"""
|
| 220 |
+
Regularizer L_dev as in Equation 8
|
| 221 |
+
"""
|
| 222 |
+
dist = torch.norm(ue - torch.index_select(input=vd, index=edge_group_to_vd, dim=0), dim=-1)
|
| 223 |
+
mean_l2 = torch.zeros_like(vd[:, 0])
|
| 224 |
+
mean_l2 = (mean_l2).index_add_(0, edge_group_to_vd, dist) / vd_num_edges.squeeze(1).float()
|
| 225 |
+
mad = (dist - torch.index_select(input=mean_l2, index=edge_group_to_vd, dim=0)).abs()
|
| 226 |
+
return mad
|
| 227 |
+
|
| 228 |
+
def _normalize_weights(self, beta_fx12, alpha_fx8, gamma_f, surf_cubes):
|
| 229 |
+
"""
|
| 230 |
+
Normalizes the given weights to be non-negative. If input weights are None, it creates and returns a set of weights of ones.
|
| 231 |
+
"""
|
| 232 |
+
n_cubes = surf_cubes.shape[0]
|
| 233 |
+
|
| 234 |
+
if beta_fx12 is not None:
|
| 235 |
+
beta_fx12 = (torch.tanh(beta_fx12) * self.weight_scale + 1)
|
| 236 |
+
else:
|
| 237 |
+
beta_fx12 = torch.ones((n_cubes, 12), dtype=torch.float, device=self.device)
|
| 238 |
+
|
| 239 |
+
if alpha_fx8 is not None:
|
| 240 |
+
alpha_fx8 = (torch.tanh(alpha_fx8) * self.weight_scale + 1)
|
| 241 |
+
else:
|
| 242 |
+
alpha_fx8 = torch.ones((n_cubes, 8), dtype=torch.float, device=self.device)
|
| 243 |
+
|
| 244 |
+
if gamma_f is not None:
|
| 245 |
+
gamma_f = torch.sigmoid(gamma_f) * self.weight_scale + (1 - self.weight_scale)/2
|
| 246 |
+
else:
|
| 247 |
+
gamma_f = torch.ones((n_cubes), dtype=torch.float, device=self.device)
|
| 248 |
+
|
| 249 |
+
return beta_fx12[surf_cubes], alpha_fx8[surf_cubes], gamma_f[surf_cubes]
|
| 250 |
+
|
| 251 |
+
@torch.no_grad()
|
| 252 |
+
def _get_case_id(self, occ_fx8, surf_cubes, res):
|
| 253 |
+
"""
|
| 254 |
+
Obtains the ID of topology cases based on cell corner occupancy. This function resolves the
|
| 255 |
+
ambiguity in the Dual Marching Cubes (DMC) configurations as described in Section 1.3 of the
|
| 256 |
+
supplementary material. It should be noted that this function assumes a regular grid.
|
| 257 |
+
"""
|
| 258 |
+
case_ids = (occ_fx8[surf_cubes] * self.cube_corners_idx.to(self.device).unsqueeze(0)).sum(-1)
|
| 259 |
+
|
| 260 |
+
problem_config = self.check_table.to(self.device)[case_ids]
|
| 261 |
+
to_check = problem_config[..., 0] == 1
|
| 262 |
+
problem_config = problem_config[to_check]
|
| 263 |
+
if not isinstance(res, (list, tuple)):
|
| 264 |
+
res = [res, res, res]
|
| 265 |
+
|
| 266 |
+
# The 'problematic_configs' only contain configurations for surface cubes. Next, we construct a 3D array,
|
| 267 |
+
# 'problem_config_full', to store configurations for all cubes (with default config for non-surface cubes).
|
| 268 |
+
# This allows efficient checking on adjacent cubes.
|
| 269 |
+
problem_config_full = torch.zeros(list(res) + [5], device=self.device, dtype=torch.long)
|
| 270 |
+
vol_idx = torch.nonzero(problem_config_full[..., 0] == 0) # N, 3
|
| 271 |
+
vol_idx_problem = vol_idx[surf_cubes][to_check]
|
| 272 |
+
problem_config_full[vol_idx_problem[..., 0], vol_idx_problem[..., 1], vol_idx_problem[..., 2]] = problem_config
|
| 273 |
+
vol_idx_problem_adj = vol_idx_problem + problem_config[..., 1:4]
|
| 274 |
+
|
| 275 |
+
within_range = (
|
| 276 |
+
vol_idx_problem_adj[..., 0] >= 0) & (
|
| 277 |
+
vol_idx_problem_adj[..., 0] < res[0]) & (
|
| 278 |
+
vol_idx_problem_adj[..., 1] >= 0) & (
|
| 279 |
+
vol_idx_problem_adj[..., 1] < res[1]) & (
|
| 280 |
+
vol_idx_problem_adj[..., 2] >= 0) & (
|
| 281 |
+
vol_idx_problem_adj[..., 2] < res[2])
|
| 282 |
+
|
| 283 |
+
vol_idx_problem = vol_idx_problem[within_range]
|
| 284 |
+
vol_idx_problem_adj = vol_idx_problem_adj[within_range]
|
| 285 |
+
problem_config = problem_config[within_range]
|
| 286 |
+
problem_config_adj = problem_config_full[vol_idx_problem_adj[..., 0],
|
| 287 |
+
vol_idx_problem_adj[..., 1], vol_idx_problem_adj[..., 2]]
|
| 288 |
+
# If two cubes with cases C16 and C19 share an ambiguous face, both cases are inverted.
|
| 289 |
+
to_invert = (problem_config_adj[..., 0] == 1)
|
| 290 |
+
idx = torch.arange(case_ids.shape[0], device=self.device)[to_check][within_range][to_invert]
|
| 291 |
+
case_ids.index_put_((idx,), problem_config[to_invert][..., -1])
|
| 292 |
+
return case_ids
|
| 293 |
+
|
| 294 |
+
@torch.no_grad()
|
| 295 |
+
def _identify_surf_edges(self, s_n, cube_fx8, surf_cubes):
|
| 296 |
+
"""
|
| 297 |
+
Identifies grid edges that intersect with the underlying surface by checking for opposite signs. As each edge
|
| 298 |
+
can be shared by multiple cubes, this function also assigns a unique index to each surface-intersecting edge
|
| 299 |
+
and marks the cube edges with this index.
|
| 300 |
+
"""
|
| 301 |
+
occ_n = s_n < 0
|
| 302 |
+
all_edges = cube_fx8[surf_cubes][:, self.cube_edges].reshape(-1, 2)
|
| 303 |
+
unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True)
|
| 304 |
+
|
| 305 |
+
unique_edges = unique_edges.long()
|
| 306 |
+
mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1
|
| 307 |
+
|
| 308 |
+
surf_edges_mask = mask_edges[_idx_map]
|
| 309 |
+
counts = counts[_idx_map]
|
| 310 |
+
|
| 311 |
+
mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=cube_fx8.device) * -1
|
| 312 |
+
mapping[mask_edges] = torch.arange(mask_edges.sum(), device=cube_fx8.device)
|
| 313 |
+
# Shaped as [number of cubes x 12 edges per cube]. This is later used to map a cube edge to the unique index
|
| 314 |
+
# for a surface-intersecting edge. Non-surface-intersecting edges are marked with -1.
|
| 315 |
+
idx_map = mapping[_idx_map]
|
| 316 |
+
surf_edges = unique_edges[mask_edges]
|
| 317 |
+
return surf_edges, idx_map, counts, surf_edges_mask
|
| 318 |
+
|
| 319 |
+
@torch.no_grad()
|
| 320 |
+
def _identify_surf_cubes(self, s_n, cube_fx8):
|
| 321 |
+
"""
|
| 322 |
+
Identifies grid cubes that intersect with the underlying surface by checking if the signs at
|
| 323 |
+
all corners are not identical.
|
| 324 |
+
"""
|
| 325 |
+
occ_n = s_n < 0
|
| 326 |
+
occ_fx8 = occ_n[cube_fx8.reshape(-1)].reshape(-1, 8)
|
| 327 |
+
_occ_sum = torch.sum(occ_fx8, -1)
|
| 328 |
+
surf_cubes = (_occ_sum > 0) & (_occ_sum < 8)
|
| 329 |
+
return surf_cubes, occ_fx8
|
| 330 |
+
|
| 331 |
+
def _linear_interp(self, edges_weight, edges_x):
|
| 332 |
+
"""
|
| 333 |
+
Computes the location of zero-crossings on 'edges_x' using linear interpolation with 'edges_weight'.
|
| 334 |
+
"""
|
| 335 |
+
edge_dim = edges_weight.dim() - 2
|
| 336 |
+
assert edges_weight.shape[edge_dim] == 2
|
| 337 |
+
edges_weight = torch.cat([torch.index_select(input=edges_weight, index=torch.tensor(1, device=self.device), dim=edge_dim), -
|
| 338 |
+
torch.index_select(input=edges_weight, index=torch.tensor(0, device=self.device), dim=edge_dim)], edge_dim)
|
| 339 |
+
denominator = edges_weight.sum(edge_dim)
|
| 340 |
+
ue = (edges_x * edges_weight).sum(edge_dim) / denominator
|
| 341 |
+
return ue
|
| 342 |
+
|
| 343 |
+
def _solve_vd_QEF(self, p_bxnx3, norm_bxnx3, c_bx3=None):
|
| 344 |
+
p_bxnx3 = p_bxnx3.reshape(-1, 7, 3)
|
| 345 |
+
norm_bxnx3 = norm_bxnx3.reshape(-1, 7, 3)
|
| 346 |
+
c_bx3 = c_bx3.reshape(-1, 3)
|
| 347 |
+
A = norm_bxnx3
|
| 348 |
+
B = ((p_bxnx3) * norm_bxnx3).sum(-1, keepdims=True)
|
| 349 |
+
|
| 350 |
+
A_reg = (torch.eye(3, device=p_bxnx3.device) * self.qef_reg_scale).unsqueeze(0).repeat(p_bxnx3.shape[0], 1, 1)
|
| 351 |
+
B_reg = (self.qef_reg_scale * c_bx3).unsqueeze(-1)
|
| 352 |
+
A = torch.cat([A, A_reg], 1)
|
| 353 |
+
B = torch.cat([B, B_reg], 1)
|
| 354 |
+
dual_verts = torch.linalg.lstsq(A, B).solution.squeeze(-1)
|
| 355 |
+
return dual_verts
|
| 356 |
+
|
| 357 |
+
def _compute_vd(self, x_nx3, surf_cubes_fx8, surf_edges, s_n, case_ids, beta_fx12, alpha_fx8, gamma_f, idx_map, grad_func):
|
| 358 |
+
"""
|
| 359 |
+
Computes the location of dual vertices as described in Section 4.2
|
| 360 |
+
"""
|
| 361 |
+
alpha_nx12x2 = torch.index_select(input=alpha_fx8, index=self.cube_edges, dim=1).reshape(-1, 12, 2)
|
| 362 |
+
surf_edges_x = torch.index_select(input=x_nx3, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 3)
|
| 363 |
+
surf_edges_s = torch.index_select(input=s_n, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 1)
|
| 364 |
+
zero_crossing = self._linear_interp(surf_edges_s, surf_edges_x)
|
| 365 |
+
|
| 366 |
+
idx_map = idx_map.reshape(-1, 12)
|
| 367 |
+
num_vd = torch.index_select(input=self.num_vd_table, index=case_ids, dim=0)
|
| 368 |
+
edge_group, edge_group_to_vd, edge_group_to_cube, vd_num_edges, vd_gamma = [], [], [], [], []
|
| 369 |
+
|
| 370 |
+
total_num_vd = 0
|
| 371 |
+
vd_idx_map = torch.zeros((case_ids.shape[0], 12), dtype=torch.long, device=self.device, requires_grad=False)
|
| 372 |
+
if grad_func is not None:
|
| 373 |
+
normals = torch.nn.functional.normalize(grad_func(zero_crossing), dim=-1)
|
| 374 |
+
vd = []
|
| 375 |
+
for num in torch.unique(num_vd):
|
| 376 |
+
cur_cubes = (num_vd == num) # consider cubes with the same numbers of vd emitted (for batching)
|
| 377 |
+
curr_num_vd = cur_cubes.sum() * num
|
| 378 |
+
curr_edge_group = self.dmc_table[case_ids[cur_cubes], :num].reshape(-1, num * 7)
|
| 379 |
+
curr_edge_group_to_vd = torch.arange(
|
| 380 |
+
curr_num_vd, device=self.device).unsqueeze(-1).repeat(1, 7) + total_num_vd
|
| 381 |
+
total_num_vd += curr_num_vd
|
| 382 |
+
curr_edge_group_to_cube = torch.arange(idx_map.shape[0], device=self.device)[
|
| 383 |
+
cur_cubes].unsqueeze(-1).repeat(1, num * 7).reshape_as(curr_edge_group)
|
| 384 |
+
|
| 385 |
+
curr_mask = (curr_edge_group != -1)
|
| 386 |
+
edge_group.append(torch.masked_select(curr_edge_group, curr_mask))
|
| 387 |
+
edge_group_to_vd.append(torch.masked_select(curr_edge_group_to_vd.reshape_as(curr_edge_group), curr_mask))
|
| 388 |
+
edge_group_to_cube.append(torch.masked_select(curr_edge_group_to_cube, curr_mask))
|
| 389 |
+
vd_num_edges.append(curr_mask.reshape(-1, 7).sum(-1, keepdims=True))
|
| 390 |
+
vd_gamma.append(torch.masked_select(gamma_f, cur_cubes).unsqueeze(-1).repeat(1, num).reshape(-1))
|
| 391 |
+
|
| 392 |
+
if grad_func is not None:
|
| 393 |
+
with torch.no_grad():
|
| 394 |
+
cube_e_verts_idx = idx_map[cur_cubes]
|
| 395 |
+
curr_edge_group[~curr_mask] = 0
|
| 396 |
+
|
| 397 |
+
verts_group_idx = torch.gather(input=cube_e_verts_idx, dim=1, index=curr_edge_group)
|
| 398 |
+
verts_group_idx[verts_group_idx == -1] = 0
|
| 399 |
+
verts_group_pos = torch.index_select(
|
| 400 |
+
input=zero_crossing, index=verts_group_idx.reshape(-1), dim=0).reshape(-1, num.item(), 7, 3)
|
| 401 |
+
v0 = x_nx3[surf_cubes_fx8[cur_cubes][:, 0]].reshape(-1, 1, 1, 3).repeat(1, num.item(), 1, 1)
|
| 402 |
+
curr_mask = curr_mask.reshape(-1, num.item(), 7, 1)
|
| 403 |
+
verts_centroid = (verts_group_pos * curr_mask).sum(2) / (curr_mask.sum(2))
|
| 404 |
+
|
| 405 |
+
normals_bx7x3 = torch.index_select(input=normals, index=verts_group_idx.reshape(-1), dim=0).reshape(
|
| 406 |
+
-1, num.item(), 7,
|
| 407 |
+
3)
|
| 408 |
+
curr_mask = curr_mask.squeeze(2)
|
| 409 |
+
vd.append(self._solve_vd_QEF((verts_group_pos - v0) * curr_mask, normals_bx7x3 * curr_mask,
|
| 410 |
+
verts_centroid - v0.squeeze(2)) + v0.reshape(-1, 3))
|
| 411 |
+
edge_group = torch.cat(edge_group)
|
| 412 |
+
edge_group_to_vd = torch.cat(edge_group_to_vd)
|
| 413 |
+
edge_group_to_cube = torch.cat(edge_group_to_cube)
|
| 414 |
+
vd_num_edges = torch.cat(vd_num_edges)
|
| 415 |
+
vd_gamma = torch.cat(vd_gamma)
|
| 416 |
+
|
| 417 |
+
if grad_func is not None:
|
| 418 |
+
vd = torch.cat(vd)
|
| 419 |
+
L_dev = torch.zeros([1], device=self.device)
|
| 420 |
+
else:
|
| 421 |
+
vd = torch.zeros((total_num_vd, 3), device=self.device)
|
| 422 |
+
beta_sum = torch.zeros((total_num_vd, 1), device=self.device)
|
| 423 |
+
|
| 424 |
+
idx_group = torch.gather(input=idx_map.reshape(-1), dim=0, index=edge_group_to_cube * 12 + edge_group)
|
| 425 |
+
|
| 426 |
+
x_group = torch.index_select(input=surf_edges_x, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 3)
|
| 427 |
+
s_group = torch.index_select(input=surf_edges_s, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 1)
|
| 428 |
+
|
| 429 |
+
zero_crossing_group = torch.index_select(
|
| 430 |
+
input=zero_crossing, index=idx_group.reshape(-1), dim=0).reshape(-1, 3)
|
| 431 |
+
|
| 432 |
+
alpha_group = torch.index_select(input=alpha_nx12x2.reshape(-1, 2), dim=0,
|
| 433 |
+
index=edge_group_to_cube * 12 + edge_group).reshape(-1, 2, 1)
|
| 434 |
+
ue_group = self._linear_interp(s_group * alpha_group, x_group)
|
| 435 |
+
|
| 436 |
+
beta_group = torch.gather(input=beta_fx12.reshape(-1), dim=0,
|
| 437 |
+
index=edge_group_to_cube * 12 + edge_group).reshape(-1, 1)
|
| 438 |
+
beta_sum = beta_sum.index_add_(0, index=edge_group_to_vd, source=beta_group)
|
| 439 |
+
vd = vd.index_add_(0, index=edge_group_to_vd, source=ue_group * beta_group) / beta_sum
|
| 440 |
+
L_dev = self._compute_reg_loss(vd, zero_crossing_group, edge_group_to_vd, vd_num_edges)
|
| 441 |
+
|
| 442 |
+
v_idx = torch.arange(vd.shape[0], device=self.device) # + total_num_vd
|
| 443 |
+
|
| 444 |
+
vd_idx_map = (vd_idx_map.reshape(-1)).scatter(dim=0, index=edge_group_to_cube *
|
| 445 |
+
12 + edge_group, src=v_idx[edge_group_to_vd])
|
| 446 |
+
|
| 447 |
+
return vd, L_dev, vd_gamma, vd_idx_map
|
| 448 |
+
|
| 449 |
+
def _triangulate(self, s_n, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, grad_func):
|
| 450 |
+
"""
|
| 451 |
+
Connects four neighboring dual vertices to form a quadrilateral. The quadrilaterals are then split into
|
| 452 |
+
triangles based on the gamma parameter, as described in Section 4.3.
|
| 453 |
+
"""
|
| 454 |
+
with torch.no_grad():
|
| 455 |
+
group_mask = (edge_counts == 4) & surf_edges_mask # surface edges shared by 4 cubes.
|
| 456 |
+
group = idx_map.reshape(-1)[group_mask]
|
| 457 |
+
vd_idx = vd_idx_map[group_mask]
|
| 458 |
+
edge_indices, indices = torch.sort(group, stable=True)
|
| 459 |
+
quad_vd_idx = vd_idx[indices].reshape(-1, 4)
|
| 460 |
+
|
| 461 |
+
# Ensure all face directions point towards the positive SDF to maintain consistent winding.
|
| 462 |
+
s_edges = s_n[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1)].reshape(-1, 2)
|
| 463 |
+
flip_mask = s_edges[:, 0] > 0
|
| 464 |
+
quad_vd_idx = torch.cat((quad_vd_idx[flip_mask][:, [0, 1, 3, 2]],
|
| 465 |
+
quad_vd_idx[~flip_mask][:, [2, 3, 1, 0]]))
|
| 466 |
+
if grad_func is not None:
|
| 467 |
+
# when grad_func is given, split quadrilaterals along the diagonals with more consistent gradients.
|
| 468 |
+
with torch.no_grad():
|
| 469 |
+
vd_gamma = torch.nn.functional.normalize(grad_func(vd), dim=-1)
|
| 470 |
+
quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3)
|
| 471 |
+
gamma_02 = (quad_gamma[:, 0] * quad_gamma[:, 2]).sum(-1, keepdims=True)
|
| 472 |
+
gamma_13 = (quad_gamma[:, 1] * quad_gamma[:, 3]).sum(-1, keepdims=True)
|
| 473 |
+
else:
|
| 474 |
+
quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4)
|
| 475 |
+
gamma_02 = torch.index_select(input=quad_gamma, index=torch.tensor(
|
| 476 |
+
0, device=self.device), dim=1) * torch.index_select(input=quad_gamma, index=torch.tensor(2, device=self.device), dim=1)
|
| 477 |
+
gamma_13 = torch.index_select(input=quad_gamma, index=torch.tensor(
|
| 478 |
+
1, device=self.device), dim=1) * torch.index_select(input=quad_gamma, index=torch.tensor(3, device=self.device), dim=1)
|
| 479 |
+
if not training:
|
| 480 |
+
mask = (gamma_02 > gamma_13).squeeze(1)
|
| 481 |
+
faces = torch.zeros((quad_gamma.shape[0], 6), dtype=torch.long, device=quad_vd_idx.device)
|
| 482 |
+
faces[mask] = quad_vd_idx[mask][:, self.quad_split_1]
|
| 483 |
+
faces[~mask] = quad_vd_idx[~mask][:, self.quad_split_2]
|
| 484 |
+
faces = faces.reshape(-1, 3)
|
| 485 |
+
else:
|
| 486 |
+
vd_quad = torch.index_select(input=vd, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3)
|
| 487 |
+
vd_02 = (torch.index_select(input=vd_quad, index=torch.tensor(0, device=self.device), dim=1) +
|
| 488 |
+
torch.index_select(input=vd_quad, index=torch.tensor(2, device=self.device), dim=1)) / 2
|
| 489 |
+
vd_13 = (torch.index_select(input=vd_quad, index=torch.tensor(1, device=self.device), dim=1) +
|
| 490 |
+
torch.index_select(input=vd_quad, index=torch.tensor(3, device=self.device), dim=1)) / 2
|
| 491 |
+
weight_sum = (gamma_02 + gamma_13) + 1e-8
|
| 492 |
+
vd_center = ((vd_02 * gamma_02.unsqueeze(-1) + vd_13 * gamma_13.unsqueeze(-1)) /
|
| 493 |
+
weight_sum.unsqueeze(-1)).squeeze(1)
|
| 494 |
+
vd_center_idx = torch.arange(vd_center.shape[0], device=self.device) + vd.shape[0]
|
| 495 |
+
vd = torch.cat([vd, vd_center])
|
| 496 |
+
faces = quad_vd_idx[:, self.quad_split_train].reshape(-1, 4, 2)
|
| 497 |
+
faces = torch.cat([faces, vd_center_idx.reshape(-1, 1, 1).repeat(1, 4, 1)], -1).reshape(-1, 3)
|
| 498 |
+
return vd, faces, s_edges, edge_indices
|
| 499 |
+
|
| 500 |
+
def _tetrahedralize(
|
| 501 |
+
self, x_nx3, s_n, cube_fx8, vertices, faces, surf_edges, s_edges, vd_idx_map, case_ids, edge_indices,
|
| 502 |
+
surf_cubes, training):
|
| 503 |
+
"""
|
| 504 |
+
Tetrahedralizes the interior volume to produce a tetrahedral mesh, as described in Section 4.5.
|
| 505 |
+
"""
|
| 506 |
+
occ_n = s_n < 0
|
| 507 |
+
occ_fx8 = occ_n[cube_fx8.reshape(-1)].reshape(-1, 8)
|
| 508 |
+
occ_sum = torch.sum(occ_fx8, -1)
|
| 509 |
+
|
| 510 |
+
inside_verts = x_nx3[occ_n]
|
| 511 |
+
mapping_inside_verts = torch.ones((occ_n.shape[0]), dtype=torch.long, device=self.device) * -1
|
| 512 |
+
mapping_inside_verts[occ_n] = torch.arange(occ_n.sum(), device=self.device) + vertices.shape[0]
|
| 513 |
+
"""
|
| 514 |
+
For each grid edge connecting two grid vertices with different
|
| 515 |
+
signs, we first form a four-sided pyramid by connecting one
|
| 516 |
+
of the grid vertices with four mesh vertices that correspond
|
| 517 |
+
to the grid edge and then subdivide the pyramid into two tetrahedra
|
| 518 |
+
"""
|
| 519 |
+
inside_verts_idx = mapping_inside_verts[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1, 2)[
|
| 520 |
+
s_edges < 0]]
|
| 521 |
+
if not training:
|
| 522 |
+
inside_verts_idx = inside_verts_idx.unsqueeze(1).expand(-1, 2).reshape(-1)
|
| 523 |
+
else:
|
| 524 |
+
inside_verts_idx = inside_verts_idx.unsqueeze(1).expand(-1, 4).reshape(-1)
|
| 525 |
+
|
| 526 |
+
tets_surface = torch.cat([faces, inside_verts_idx.unsqueeze(-1)], -1)
|
| 527 |
+
"""
|
| 528 |
+
For each grid edge connecting two grid vertices with the
|
| 529 |
+
same sign, the tetrahedron is formed by the two grid vertices
|
| 530 |
+
and two vertices in consecutive adjacent cells
|
| 531 |
+
"""
|
| 532 |
+
inside_cubes = (occ_sum == 8)
|
| 533 |
+
inside_cubes_center = x_nx3[cube_fx8[inside_cubes].reshape(-1)].reshape(-1, 8, 3).mean(1)
|
| 534 |
+
inside_cubes_center_idx = torch.arange(
|
| 535 |
+
inside_cubes_center.shape[0], device=inside_cubes.device) + vertices.shape[0] + inside_verts.shape[0]
|
| 536 |
+
|
| 537 |
+
surface_n_inside_cubes = surf_cubes | inside_cubes
|
| 538 |
+
edge_center_vertex_idx = torch.ones(((surface_n_inside_cubes).sum(), 13),
|
| 539 |
+
dtype=torch.long, device=x_nx3.device) * -1
|
| 540 |
+
surf_cubes = surf_cubes[surface_n_inside_cubes]
|
| 541 |
+
inside_cubes = inside_cubes[surface_n_inside_cubes]
|
| 542 |
+
edge_center_vertex_idx[surf_cubes, :12] = vd_idx_map.reshape(-1, 12)
|
| 543 |
+
edge_center_vertex_idx[inside_cubes, 12] = inside_cubes_center_idx
|
| 544 |
+
|
| 545 |
+
all_edges = cube_fx8[surface_n_inside_cubes][:, self.cube_edges].reshape(-1, 2)
|
| 546 |
+
unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True)
|
| 547 |
+
unique_edges = unique_edges.long()
|
| 548 |
+
mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 2
|
| 549 |
+
mask = mask_edges[_idx_map]
|
| 550 |
+
counts = counts[_idx_map]
|
| 551 |
+
mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=self.device) * -1
|
| 552 |
+
mapping[mask_edges] = torch.arange(mask_edges.sum(), device=self.device)
|
| 553 |
+
idx_map = mapping[_idx_map]
|
| 554 |
+
|
| 555 |
+
group_mask = (counts == 4) & mask
|
| 556 |
+
group = idx_map.reshape(-1)[group_mask]
|
| 557 |
+
edge_indices, indices = torch.sort(group)
|
| 558 |
+
cube_idx = torch.arange((_idx_map.shape[0] // 12), dtype=torch.long,
|
| 559 |
+
device=self.device).unsqueeze(1).expand(-1, 12).reshape(-1)[group_mask]
|
| 560 |
+
edge_idx = torch.arange((12), dtype=torch.long, device=self.device).unsqueeze(
|
| 561 |
+
0).expand(_idx_map.shape[0] // 12, -1).reshape(-1)[group_mask]
|
| 562 |
+
# Identify the face shared by the adjacent cells.
|
| 563 |
+
cube_idx_4 = cube_idx[indices].reshape(-1, 4)
|
| 564 |
+
edge_dir = self.edge_dir_table[edge_idx[indices]].reshape(-1, 4)[..., 0]
|
| 565 |
+
shared_faces_4x2 = self.dir_faces_table[edge_dir].reshape(-1)
|
| 566 |
+
cube_idx_4x2 = cube_idx_4[:, self.adj_pairs].reshape(-1)
|
| 567 |
+
# Identify an edge of the face with different signs and
|
| 568 |
+
# select the mesh vertex corresponding to the identified edge.
|
| 569 |
+
case_ids_expand = torch.ones((surface_n_inside_cubes).sum(), dtype=torch.long, device=x_nx3.device) * 255
|
| 570 |
+
case_ids_expand[surf_cubes] = case_ids
|
| 571 |
+
cases = case_ids_expand[cube_idx_4x2]
|
| 572 |
+
quad_edge = edge_center_vertex_idx[cube_idx_4x2, self.tet_table[cases, shared_faces_4x2]].reshape(-1, 2)
|
| 573 |
+
mask = (quad_edge == -1).sum(-1) == 0
|
| 574 |
+
inside_edge = mapping_inside_verts[unique_edges[mask_edges][edge_indices].reshape(-1)].reshape(-1, 2)
|
| 575 |
+
tets_inside = torch.cat([quad_edge, inside_edge], -1)[mask]
|
| 576 |
+
|
| 577 |
+
tets = torch.cat([tets_surface, tets_inside])
|
| 578 |
+
vertices = torch.cat([vertices, inside_verts, inside_cubes_center])
|
| 579 |
+
return vertices, tets
|