Model-Demo / train.py
Mariam-Elz's picture
Upload train.py with huggingface_hub
e03ed9e verified
"""
training script for imagedream
- the config system is similar with stable diffusion ldm code base(using omigaconf, yaml; target, params initialization, etc.)
- the training code base is similar with unidiffuser training code base using accelerate
"""
from omegaconf import OmegaConf
import argparse
from pathlib import Path
from torch.utils.data import DataLoader
import os.path as osp
import numpy as np
import os
import torch
from PIL import Image
import numpy as np
import wandb
from libs.base_utils import get_data_generator, PrintContext
from libs.base_utils import (
setup,
instantiate_from_config,
dct2str,
add_prefix,
get_obj_from_str,
)
from absl import logging
from einops import rearrange
from imagedream.camera_utils import get_camera
from libs.sample import ImageDreamDiffusion
from rich import print
def train(config, unk):
# using pipeline to extract models
accelerator, device = setup(config, unk)
with PrintContext(f"{'access STAT':-^50}", accelerator.is_main_process):
print(accelerator.state)
dtype = {
"fp16": torch.float16,
"fp32": torch.float32,
"no": torch.float32,
"bf16": torch.bfloat16,
}[accelerator.state.mixed_precision]
num_frames = config.num_frames
################## load models ##################
model_config = config.models.config
model_config = OmegaConf.load(model_config)
model = instantiate_from_config(model_config.model)
state_dict = torch.load(config.models.resume, map_location="cpu")
print(model.load_state_dict(state_dict, strict=False))
print("loaded model from {}".format(config.models.resume))
latest_step = 0
if config.get("resume", False):
print("resuming from specified workdir")
ckpts = os.listdir(config.ckpt_root)
if len(ckpts) == 0:
print("no ckpt found")
else:
latest_ckpt = sorted(ckpts, key=lambda x: int(x.split("-")[-1]))[-1]
latest_step = int(latest_ckpt.split("-")[-1])
print("loadding ckpt from ", osp.join(config.ckpt_root, latest_ckpt))
unet_state_dict = torch.load(
osp.join(config.ckpt_root, latest_ckpt), map_location="cpu"
)
print(model.model.load_state_dict(unet_state_dict, strict=False))
elif config.models.get("resume_unet", None) is not None:
unet_state_dict = torch.load(config.models.resume_unet, map_location="cpu")
print(model.model.load_state_dict(unet_state_dict, strict=False))
print(f"______ load unet from {config.models.resume_unet} ______")
model.to(device)
model.device = device
model.clip_model.device = device
################# setup optimizer #################
from torch.optim import AdamW
from accelerate.utils import DummyOptim
optimizer_cls = (
AdamW
if accelerator.state.deepspeed_plugin is None
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
optimizer = optimizer_cls(model.model.parameters(), **config.optimizer)
################# prepare datasets #################
dataset = instantiate_from_config(config.train_data)
eval_dataset = instantiate_from_config(config.eval_data)
in_the_wild_images = (
instantiate_from_config(config.in_the_wild_images)
if config.get("in_the_wild_images", None) is not None
else None
)
dl_config = config.dataloader
dataloader = DataLoader(dataset, **dl_config, batch_size=config.batch_size)
(
model,
optimizer,
dataloader,
) = accelerator.prepare(model, optimizer, dataloader)
generator = get_data_generator(dataloader, accelerator.is_main_process, "train")
if config.get("sampler", None) is not None:
sampler_cls = get_obj_from_str(config.sampler.target)
sampler = sampler_cls(model, device, dtype, **config.sampler.params)
else:
sampler = ImageDreamDiffusion(
model,
mode=config.mode,
num_frames=num_frames,
device=device,
dtype=dtype,
camera_views=dataset.camera_views,
offset_noise=config.get("offset_noise", False),
ref_position=dataset.ref_position,
random_background=dataset.random_background,
resize_rate=dataset.resize_rate,
)
################# evaluation code #################
def evaluation():
return_ls = []
for i in range(
accelerator.process_index, len(eval_dataset), accelerator.num_processes
):
cond = eval_dataset[i]["cond"]
images = sampler.diffuse("3D assets.", cond, n_test=2)
images = np.concatenate(images, 0)
images = [Image.fromarray(images)]
return_ls.append(dict(images=images, ident=eval_dataset[i]["ident"]))
return return_ls
def evaluation2():
# eval for common used in the wild image
return_ls = []
in_the_wild_images.init_item()
for i in range(
accelerator.process_index,
len(in_the_wild_images),
accelerator.num_processes,
):
cond = in_the_wild_images[i]["cond"]
images = sampler.diffuse("3D assets.", cond, n_test=2)
images = np.concatenate(images, 0)
images = [Image.fromarray(images)]
return_ls.append(dict(images=images, ident=in_the_wild_images[i]["ident"]))
return return_ls
if latest_step == 0:
global_step = 0
total_step = 0
log_step = 0
eval_step = 0
save_step = 0
else:
global_step = latest_step // config.total_batch_size
total_step = latest_step
log_step = latest_step + config.log_interval
eval_step = latest_step + config.eval_interval
save_step = latest_step + config.save_interval
unet = model.model
while True:
item = next(generator)
unet.train()
bs = item["clip_cond"].shape[0]
BS = bs * num_frames
item["clip_cond"] = item["clip_cond"].to(device).to(dtype)
item["vae_cond"] = item["vae_cond"].to(device).to(dtype)
camera_input = item["cameras"].to(device)
camera_input = camera_input.reshape((BS, camera_input.shape[-1]))
gd_type = config.get("gd_type", "pixel")
if gd_type == "pixel":
item["target_images_vae"] = item["target_images_vae"].to(device).to(dtype)
gd = item["target_images_vae"]
elif gd_type == "xyz":
item["target_images_xyz_vae"] = (
item["target_images_xyz_vae"].to(device).to(dtype)
)
gd = item["target_images_xyz_vae"]
elif gd_type == "fusechannel":
item["target_images_vae"] = item["target_images_vae"].to(device).to(dtype)
item["target_images_xyz_vae"] = (
item["target_images_xyz_vae"].to(device).to(dtype)
)
gd = torch.cat(
(item["target_images_vae"], item["target_images_xyz_vae"]), dim=0
)
else:
raise NotImplementedError
with torch.no_grad(), accelerator.autocast("cuda"):
ip_embed = model.clip_model.encode_image_with_transformer(item["clip_cond"])
ip_ = ip_embed.repeat_interleave(num_frames, dim=0)
ip_img = model.get_first_stage_encoding(
model.encode_first_stage(item["vae_cond"])
)
gd = rearrange(gd, "B F C H W -> (B F) C H W")
latent_target_images = model.get_first_stage_encoding(
model.encode_first_stage(gd)
)
if gd_type == "fusechannel":
latent_target_images = rearrange(
latent_target_images, "(B F) C H W -> B F C H W", B=bs * 2
)
image_latent, xyz_latent = torch.chunk(latent_target_images, 2)
fused_channel_latent = torch.cat((image_latent, xyz_latent), dim=-3)
latent_target_images = rearrange(
fused_channel_latent, "B F C H W -> (B F) C H W"
)
if item.get("captions", None) is not None:
caption_ls = np.array(item["caption"]).T.reshape((-1, BS)).squeeze()
prompt_cond = model.get_learned_conditioning(caption_ls)
elif item.get("caption", None) is not None:
prompt_cond = model.get_learned_conditioning(item["caption"])
prompt_cond = prompt_cond.repeat_interleave(num_frames, dim=0)
else:
prompt_cond = model.get_learned_conditioning(["3D assets."]).repeat(
BS, 1, 1
)
condition = {
"context": prompt_cond,
"ip": ip_,
"ip_img": ip_img,
"camera": camera_input,
}
with torch.autocast("cuda"), accelerator.accumulate(model):
time_steps = torch.randint(0, model.num_timesteps, (BS,), device=device)
noise = torch.randn_like(latent_target_images, device=device)
# noise_img, _ = torch.chunk(noise, 2, dim=1)
# noise = torch.cat((noise_img, noise_img), dim=1)
x_noisy = model.q_sample(latent_target_images, time_steps, noise)
output = unet(x_noisy, time_steps, **condition, num_frames=num_frames)
reshaped_pred = output.reshape(bs, num_frames, *output.shape[1:]).permute(
1, 0, 2, 3, 4
)
reshaped_noise = noise.reshape(bs, num_frames, *noise.shape[1:]).permute(
1, 0, 2, 3, 4
)
true_pred = reshaped_pred[: num_frames - 1]
fake_pred = reshaped_pred[num_frames - 1 :]
true_noise = reshaped_noise[: num_frames - 1]
fake_noise = reshaped_noise[num_frames - 1 :]
loss = (
torch.nn.functional.mse_loss(true_noise, true_pred)
+ torch.nn.functional.mse_loss(fake_noise, fake_pred) * 0
)
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
global_step += 1
total_step = global_step * config.total_batch_size
if total_step > log_step:
metrics = dict(
loss=accelerator.gather(loss.detach().mean()).mean().item(),
scale=(
accelerator.scaler.get_scale()
if accelerator.scaler is not None
else -1
),
)
log_step += config.log_interval
if accelerator.is_main_process:
logging.info(dct2str(dict(step=total_step, **metrics)))
wandb.log(add_prefix(metrics, "train"), step=total_step)
if total_step > save_step and accelerator.is_main_process:
logging.info("saving done")
torch.save(
unet.state_dict(), osp.join(config.ckpt_root, f"unet-{total_step}")
)
save_step += config.save_interval
logging.info("save done")
if total_step > eval_step:
logging.info("evaluationing")
unet.eval()
return_ls = evaluation()
cur_eval_base = osp.join(config.eval_root, f"{total_step:07d}")
os.makedirs(cur_eval_base, exist_ok=True)
for item in return_ls:
for i, im in enumerate(item["images"]):
im.save(
osp.join(
cur_eval_base,
f"{item['ident']}-{i:03d}-{accelerator.process_index}-.png",
)
)
return_ls2 = evaluation2()
cur_eval_base = osp.join(config.eval_root2, f"{total_step:07d}")
os.makedirs(cur_eval_base, exist_ok=True)
for item in return_ls2:
for i, im in enumerate(item["images"]):
im.save(
osp.join(
cur_eval_base,
f"{item['ident']}-{i:03d}-{accelerator.process_index}-inthewild.png",
)
)
eval_step += config.eval_interval
logging.info("evaluation done")
accelerator.wait_for_everyone()
if total_step > config.max_step:
break
if __name__ == "__main__":
# load config from config path, then merge with cli args
parser = argparse.ArgumentParser()
parser.add_argument(
"--config", type=str, default="configs/nf7_v3_SNR_rd_size_stroke.yaml"
)
parser.add_argument(
"--logdir", type=str, default="train_logs", help="the dir to put logs"
)
parser.add_argument(
"--resume_workdir", type=str, default=None, help="specify to do resume"
)
args, unk = parser.parse_known_args()
print(args, unk)
config = OmegaConf.load(args.config)
if args.resume_workdir is not None:
assert osp.exists(args.resume_workdir), f"{args.resume_workdir} not exists"
config.config.workdir = args.resume_workdir
config.config.resume = True
OmegaConf.set_struct(config, True) # prevent adding new keys
cli_conf = OmegaConf.from_cli(unk)
config = OmegaConf.merge(config, cli_conf)
config = config.config
OmegaConf.set_struct(config, False)
config.logdir = args.logdir
config.config_name = Path(args.config).stem
train(config, unk)