Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| import nvdiffrast.torch as dr | |
| from util.flexicubes_geometry import FlexiCubesGeometry | |
| class Renderer(nn.Module): | |
| def __init__(self, tet_grid_size, camera_angle_num, scale, geo_type): | |
| super().__init__() | |
| self.tet_grid_size = tet_grid_size | |
| self.camera_angle_num = camera_angle_num | |
| self.scale = scale | |
| self.geo_type = geo_type | |
| # self.glctx = dr.RasterizeCudaContext() | |
| if self.geo_type == "flex": | |
| self.flexicubes = FlexiCubesGeometry(grid_res = self.tet_grid_size) | |
| def forward(self, data, sdf, deform, verts, tets, training=False, weight = None): | |
| results = {} | |
| deform = torch.tanh(deform) / self.tet_grid_size * self.scale / 0.95 | |
| if self.geo_type == "flex": | |
| deform = deform *0.5 | |
| v_deformed = verts + deform | |
| verts_list = [] | |
| faces_list = [] | |
| reg_list = [] | |
| n_shape = verts.shape[0] | |
| for i in range(n_shape): | |
| verts_i, faces_i, reg_i = self.flexicubes.get_mesh(v_deformed[i], sdf[i].squeeze(dim=-1), | |
| with_uv=False, indices=tets, weight_n=weight[i], is_training=training) | |
| verts_list.append(verts_i) | |
| faces_list.append(faces_i) | |
| reg_list.append(reg_i) | |
| verts = verts_list | |
| faces = faces_list | |
| flexicubes_surface_reg = torch.cat(reg_list).mean() | |
| flexicubes_weight_reg = (weight ** 2).mean() | |
| results["flex_surf_loss"] = flexicubes_surface_reg | |
| results["flex_weight_loss"] = flexicubes_weight_reg | |
| return results, verts, faces |