Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from diffusers import StableDiffusionInstructPix2PixPipeline
|
| 6 |
+
|
| 7 |
+
model_id = "timbrooks/instruct-pix2pix"
|
| 8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
+
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16") if torch.cuda.is_available() else StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id)
|
| 10 |
+
pipe = pipe.to(device)
|
| 11 |
+
|
| 12 |
+
def resize(value,img):
|
| 13 |
+
img = Image.open(img)
|
| 14 |
+
img = img.resize((value,value))
|
| 15 |
+
return img
|
| 16 |
+
|
| 17 |
+
def infer(source_img, instructions, guide, steps, seed, Strength):
|
| 18 |
+
generator = torch.Generator(device).manual_seed(seed)
|
| 19 |
+
source_image = resize(512, source_img)
|
| 20 |
+
source_image.save('source.png')
|
| 21 |
+
image = pipe(instructions, image=source_image,
|
| 22 |
+
guidance_scale=guide, image_guidance_scale=Strength,
|
| 23 |
+
num_inference_steps=steps, generator=generator,).images[0]
|
| 24 |
+
return image
|
| 25 |
+
|
| 26 |
+
gr.Interface(fn=infer, inputs=[gr.Image(source="upload", type="filepath", label="Raw Image. Must Be .png"),
|
| 27 |
+
gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'),
|
| 28 |
+
gr.Slider(2, 15, value = 7, label = 'Guidance Scale'),
|
| 29 |
+
gr.Slider(1, 20, value = 5, step = 1, label = 'Number of Iterations'),
|
| 30 |
+
gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True),
|
| 31 |
+
gr.Slider(label='Strength', minimum = .1, maximum = 2, step = .05, value = .5)],
|
| 32 |
+
outputs='image',
|
| 33 |
+
description = "MUST Be .PNG and 512x512 or 768x768</b>) enter a Prompt, or let it just do its Thing, then click submit. 10 Iterations takes about ~900-1200 seconds currently. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic",
|
| 34 |
+
article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").queue(max_size=5).launch(debug=True)
|