cnmoro's picture
Update app.py
33e971b verified
raw
history blame
1.71 kB
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
from threading import Thread
torch.set_num_threads(2)
# Loading the tokenizer and model from Hugging Face's model hub.
tokenizer = AutoTokenizer.from_pretrained("cnmoro/jack-68m-text-structurization")
model = AutoModelForCausalLM.from_pretrained("cnmoro/jack-68m-text-structurization")
# using CUDA for an optimal experience
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
# Function to generate model predictions.
def predict(message, history):
model_inputs = tokenizer([
f"### Structurize: {message}\n\n### Response:\n"
], return_tensors="pt").to(device)
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=512,
top_p=0.2,
top_k=20,
temperature=0.1,
repetition_penalty=2.0,
length_penalty=-0.5,
num_beams=1,
prompt_lookup_num_tokens=10
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start() # Starting the generation in a separate thread.
partial_message = ""
for new_token in streamer:
partial_message += new_token
yield partial_message
# Setting up the Gradio chat interface.
gr.ChatInterface(predict,
title="TextStructurization_Jack68m_CPU",
description="Pass a text to be structurized"
).launch() # Launching the web interface.