Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -18,6 +18,8 @@ model = AutoModelForCausalLM.from_pretrained("ManishThota/SparrowVQE",
|
|
| 18 |
tokenizer = AutoTokenizer.from_pretrained("ManishThota/SparrowVQE", trust_remote_code=True)
|
| 19 |
|
| 20 |
|
|
|
|
|
|
|
| 21 |
def video_to_frames(video, fps=1):
|
| 22 |
"""Converts a video file into frames and stores them as PNG images in a list."""
|
| 23 |
frames_png = []
|
|
@@ -59,31 +61,13 @@ def extract_frames(frame):
|
|
| 59 |
|
| 60 |
return image_bgr
|
| 61 |
|
| 62 |
-
def predict_answer(image, video, question
|
| 63 |
|
| 64 |
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{question}? ASSISTANT:"
|
| 65 |
input_ids = tokenizer(text, return_tensors='pt').input_ids.to(device)
|
| 66 |
|
| 67 |
-
# frames = video_to_frames(video)
|
| 68 |
-
# answers = []
|
| 69 |
-
# for i in range(len(frames)):
|
| 70 |
-
# image = extract_frames(frames[i])
|
| 71 |
-
# image_tensor = model.image_preprocess([image])
|
| 72 |
-
|
| 73 |
-
# # Generate the answer
|
| 74 |
-
# output_ids = model.generate(
|
| 75 |
-
# input_ids,
|
| 76 |
-
# max_new_tokens=max_tokens,
|
| 77 |
-
# images=image_tensor,
|
| 78 |
-
# use_cache=True)[0]
|
| 79 |
-
|
| 80 |
-
# answer = tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
| 81 |
-
# answers.append(answer)
|
| 82 |
-
# return answers
|
| 83 |
-
|
| 84 |
-
|
| 85 |
|
| 86 |
-
if image:
|
| 87 |
# Process as an image
|
| 88 |
image = image.convert("RGB")
|
| 89 |
image_tensor = model.image_preprocess(image)
|
|
@@ -91,30 +75,30 @@ def predict_answer(image, video, question, max_tokens=100):
|
|
| 91 |
#Generate the answer
|
| 92 |
output_ids = model.generate(
|
| 93 |
input_ids,
|
| 94 |
-
max_new_tokens=
|
| 95 |
images=image_tensor,
|
| 96 |
use_cache=True)[0]
|
| 97 |
|
| 98 |
return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
| 99 |
|
| 100 |
-
elif video:
|
| 101 |
# Process as a video
|
| 102 |
frames = video_to_frames(video)
|
| 103 |
answers = []
|
| 104 |
-
for
|
| 105 |
-
image = extract_frames(
|
| 106 |
image_tensor = model.image_preprocess([image])
|
| 107 |
|
| 108 |
# Generate the answer
|
| 109 |
output_ids = model.generate(
|
| 110 |
input_ids,
|
| 111 |
-
max_new_tokens=
|
| 112 |
images=image_tensor,
|
| 113 |
use_cache=True)[0]
|
| 114 |
|
| 115 |
answer = tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
| 116 |
answers.append(answer)
|
| 117 |
-
return
|
| 118 |
|
| 119 |
else:
|
| 120 |
return "Unsupported file type. Please upload an image or video."
|
|
@@ -122,39 +106,47 @@ def predict_answer(image, video, question, max_tokens=100):
|
|
| 122 |
|
| 123 |
|
| 124 |
|
| 125 |
-
def gradio_predict(image, video, question
|
| 126 |
-
answer = predict_answer(image, video, question
|
| 127 |
return answer
|
| 128 |
|
| 129 |
-
|
| 130 |
-
#
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
#
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
with gr.Row():
|
| 148 |
-
image = gr.Image(type="pil", label="Upload or Drag an Image")
|
| 149 |
video = gr.Video(label="Upload your video here")
|
|
|
|
| 150 |
with gr.Row():
|
| 151 |
with gr.Column():
|
| 152 |
-
question = gr.Textbox(label="Question", placeholder="
|
| 153 |
-
|
| 154 |
with gr.Column():
|
| 155 |
answer = gr.TextArea(label="Answer")
|
| 156 |
|
| 157 |
-
|
| 158 |
-
btn.click(gradio_predict, inputs=[image, video, question
|
| 159 |
|
| 160 |
app.launch(debug=True)
|
|
|
|
|
|
| 18 |
tokenizer = AutoTokenizer.from_pretrained("ManishThota/SparrowVQE", trust_remote_code=True)
|
| 19 |
|
| 20 |
|
| 21 |
+
|
| 22 |
+
|
| 23 |
def video_to_frames(video, fps=1):
|
| 24 |
"""Converts a video file into frames and stores them as PNG images in a list."""
|
| 25 |
frames_png = []
|
|
|
|
| 61 |
|
| 62 |
return image_bgr
|
| 63 |
|
| 64 |
+
def predict_answer(image, video, question):
|
| 65 |
|
| 66 |
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{question}? ASSISTANT:"
|
| 67 |
input_ids = tokenizer(text, return_tensors='pt').input_ids.to(device)
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
+
if image is not None:
|
| 71 |
# Process as an image
|
| 72 |
image = image.convert("RGB")
|
| 73 |
image_tensor = model.image_preprocess(image)
|
|
|
|
| 75 |
#Generate the answer
|
| 76 |
output_ids = model.generate(
|
| 77 |
input_ids,
|
| 78 |
+
max_new_tokens=25,
|
| 79 |
images=image_tensor,
|
| 80 |
use_cache=True)[0]
|
| 81 |
|
| 82 |
return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
| 83 |
|
| 84 |
+
elif video is not None:
|
| 85 |
# Process as a video
|
| 86 |
frames = video_to_frames(video)
|
| 87 |
answers = []
|
| 88 |
+
for frame in frames:
|
| 89 |
+
image = extract_frames(frame)
|
| 90 |
image_tensor = model.image_preprocess([image])
|
| 91 |
|
| 92 |
# Generate the answer
|
| 93 |
output_ids = model.generate(
|
| 94 |
input_ids,
|
| 95 |
+
max_new_tokens=25,
|
| 96 |
images=image_tensor,
|
| 97 |
use_cache=True)[0]
|
| 98 |
|
| 99 |
answer = tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
| 100 |
answers.append(answer)
|
| 101 |
+
return "\n".join(answers)
|
| 102 |
|
| 103 |
else:
|
| 104 |
return "Unsupported file type. Please upload an image or video."
|
|
|
|
| 106 |
|
| 107 |
|
| 108 |
|
| 109 |
+
def gradio_predict(image, video, question):
|
| 110 |
+
answer = predict_answer(image, video, question)
|
| 111 |
return answer
|
| 112 |
|
| 113 |
+
css = """
|
| 114 |
+
#container{
|
| 115 |
+
display: block;
|
| 116 |
+
margin-left: auto;
|
| 117 |
+
margin-right: auto;
|
| 118 |
+
width: 50%;
|
| 119 |
+
}
|
| 120 |
+
#intro{
|
| 121 |
+
max-width: 100%;
|
| 122 |
+
margin: 0 auto;
|
| 123 |
+
text-align: center;
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
"""
|
| 127 |
+
with gr.Blocks(css = css) as app:
|
| 128 |
+
with gr.Row(elem_id="container"):
|
| 129 |
+
gr.Markdown("""<div style='text-align: center;'><img src="https://github-production-user-asset-6210df.s3.amazonaws.com/37763863/311454340-af72f848-9735-4d49-830b-885ffbb81091.jpeg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20240309%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240309T165700Z&X-Amz-Expires=300&X-Amz-Signature=51aeb4811afff72e70c083594aaffcca1f4a2b95ddd4adf23ee5e736e4fbfefe&X-Amz-SignedHeaders=host&actor_id=37763863&key_id=0&repo_id=769602947" width="1000" height="500" /></div>""")
|
| 130 |
+
|
| 131 |
+
gr.Markdown("""
|
| 132 |
+
## This Gradio app serves as four folds:
|
| 133 |
+
### 1. My ability and experience to design a customizable Gradio application with Interface/Blocks structure.
|
| 134 |
+
### 2. One of my Multimodel Vision-Language model's capabilities with the LLaVA framework.
|
| 135 |
+
### 3. Demo for annotating random images and 4 second videos provided at Notion (https://shorturl.at/givyC)
|
| 136 |
+
### 4. Ability to integrate a Large Language Model and Vision Encoder
|
| 137 |
+
""")
|
| 138 |
with gr.Row():
|
|
|
|
| 139 |
video = gr.Video(label="Upload your video here")
|
| 140 |
+
image = gr.Image(type="pil", label="Upload or Drag an Image")
|
| 141 |
with gr.Row():
|
| 142 |
with gr.Column():
|
| 143 |
+
question = gr.Textbox(label="Question", placeholder="Annotate prompt", lines=4.3)
|
| 144 |
+
btn = gr.Button("Annotate")
|
| 145 |
with gr.Column():
|
| 146 |
answer = gr.TextArea(label="Answer")
|
| 147 |
|
| 148 |
+
|
| 149 |
+
btn.click(gradio_predict, inputs=[image, video, question], outputs=answer)
|
| 150 |
|
| 151 |
app.launch(debug=True)
|
| 152 |
+
|