Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -58,95 +58,77 @@ def extract_frames(frame):
|
|
| 58 |
|
| 59 |
return image_bgr
|
| 60 |
|
| 61 |
-
def predict_answer(video, question, max_tokens=100):
|
| 62 |
|
| 63 |
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{question}? ASSISTANT:"
|
| 64 |
input_ids = tokenizer(text, return_tensors='pt').input_ids.to(device)
|
| 65 |
|
| 66 |
-
frames = video_to_frames(video)
|
| 67 |
-
answers = []
|
| 68 |
-
for i in range(len(frames)):
|
| 69 |
-
|
| 70 |
-
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
|
| 83 |
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
|
| 97 |
-
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
|
| 118 |
-
|
| 119 |
-
|
| 120 |
|
| 121 |
|
| 122 |
|
| 123 |
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
# return answer
|
| 127 |
-
|
| 128 |
-
# iface = gr.Interface(
|
| 129 |
-
# fn=gradio_predict,
|
| 130 |
-
# inputs=[
|
| 131 |
-
# gr.Image(type="pil", label="Upload or Drag an Image"),
|
| 132 |
-
# gr.Video(label="Upload your video here"),
|
| 133 |
-
# gr.Textbox(label="Question", placeholder="e.g. Can you explain the slide?", scale=4),
|
| 134 |
-
# gr.Slider(2, 500, value=25, label="Token Count", info="Choose between 2 and 500")],
|
| 135 |
-
# outputs=gr.TextArea(label="Answer"),
|
| 136 |
-
# # outputs=gr.Image(label="Output"),
|
| 137 |
-
# title="Video/Image Viewer",
|
| 138 |
-
# description="Upload an image or video to view it or extract frames from the video.",
|
| 139 |
-
# )
|
| 140 |
-
|
| 141 |
-
# iface.launch(debug=True)
|
| 142 |
-
|
| 143 |
-
def gradio_predict(video, question, max_tokens):
|
| 144 |
-
answer = predict_answer(video, question, max_tokens)
|
| 145 |
return answer
|
| 146 |
|
| 147 |
iface = gr.Interface(
|
| 148 |
fn=gradio_predict,
|
| 149 |
inputs=[
|
|
|
|
| 150 |
gr.Video(label="Upload your video here"),
|
| 151 |
gr.Textbox(label="Question", placeholder="e.g. Can you explain the slide?", scale=4),
|
| 152 |
gr.Slider(2, 500, value=25, label="Token Count", info="Choose between 2 and 500")],
|
|
@@ -156,4 +138,4 @@ iface = gr.Interface(
|
|
| 156 |
description="Upload an image or video to view it or extract frames from the video.",
|
| 157 |
)
|
| 158 |
|
| 159 |
-
iface.launch(debug=True)
|
|
|
|
| 58 |
|
| 59 |
return image_bgr
|
| 60 |
|
| 61 |
+
def predict_answer(image, video, question, max_tokens=100):
|
| 62 |
|
| 63 |
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{question}? ASSISTANT:"
|
| 64 |
input_ids = tokenizer(text, return_tensors='pt').input_ids.to(device)
|
| 65 |
|
| 66 |
+
# frames = video_to_frames(video)
|
| 67 |
+
# answers = []
|
| 68 |
+
# for i in range(len(frames)):
|
| 69 |
+
# image = extract_frames(frames[i])
|
| 70 |
+
# image_tensor = model.image_preprocess([image])
|
| 71 |
|
| 72 |
+
# # Generate the answer
|
| 73 |
+
# output_ids = model.generate(
|
| 74 |
+
# input_ids,
|
| 75 |
+
# max_new_tokens=max_tokens,
|
| 76 |
+
# images=image_tensor,
|
| 77 |
+
# use_cache=True)[0]
|
| 78 |
|
| 79 |
+
# answer = tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
| 80 |
+
# answers.append(answer)
|
| 81 |
+
# return answers
|
| 82 |
|
| 83 |
|
| 84 |
|
| 85 |
+
if image:
|
| 86 |
+
# Process as an image
|
| 87 |
+
image = image.convert("RGB")
|
| 88 |
+
image_tensor = model.image_preprocess(image)
|
| 89 |
|
| 90 |
+
#Generate the answer
|
| 91 |
+
output_ids = model.generate(
|
| 92 |
+
input_ids,
|
| 93 |
+
max_new_tokens=max_tokens,
|
| 94 |
+
images=image_tensor,
|
| 95 |
+
use_cache=True)[0]
|
| 96 |
|
| 97 |
+
return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
| 98 |
|
| 99 |
+
elif video:
|
| 100 |
+
# Process as a video
|
| 101 |
+
frames = video_to_frames(video)
|
| 102 |
+
answers = []
|
| 103 |
+
for frame in frames:
|
| 104 |
+
image = extract_frames(frame)
|
| 105 |
+
image_tensor = model.image_preprocess([image])
|
| 106 |
|
| 107 |
+
# Generate the answer
|
| 108 |
+
output_ids = model.generate(
|
| 109 |
+
input_ids,
|
| 110 |
+
max_new_tokens=max_tokens,
|
| 111 |
+
images=image_tensor,
|
| 112 |
+
use_cache=True)[0]
|
| 113 |
|
| 114 |
+
answer = tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
| 115 |
+
answers.append(answer)
|
| 116 |
+
return answers
|
| 117 |
|
| 118 |
+
else:
|
| 119 |
+
return "Unsupported file type. Please upload an image or video."
|
| 120 |
|
| 121 |
|
| 122 |
|
| 123 |
|
| 124 |
+
def gradio_predict(image, video, question, max_tokens):
|
| 125 |
+
answer = predict_answer(image, video, question, max_tokens)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
return answer
|
| 127 |
|
| 128 |
iface = gr.Interface(
|
| 129 |
fn=gradio_predict,
|
| 130 |
inputs=[
|
| 131 |
+
gr.Image(type="pil", label="Upload or Drag an Image"),
|
| 132 |
gr.Video(label="Upload your video here"),
|
| 133 |
gr.Textbox(label="Question", placeholder="e.g. Can you explain the slide?", scale=4),
|
| 134 |
gr.Slider(2, 500, value=25, label="Token Count", info="Choose between 2 and 500")],
|
|
|
|
| 138 |
description="Upload an image or video to view it or extract frames from the video.",
|
| 139 |
)
|
| 140 |
|
| 141 |
+
iface.launch(debug=True)
|