|
import os |
|
from langchain_groq import ChatGroq |
|
from langchain_core.prompts import PromptTemplate |
|
from langchain_core.output_parsers import JsonOutputParser |
|
from langchain_core.exceptions import OutputParserException |
|
from dotenv import load_dotenv |
|
|
|
load_dotenv() |
|
|
|
class Chain: |
|
def __init__(self): |
|
self.llm = ChatGroq(temperature=0, groq_api_key=os.getenv("GROQ_API_KEY"), model_name="llama-3.3-70b-versatile") |
|
|
|
def extract_jobs(self, cleaned_text): |
|
prompt_extract = PromptTemplate.from_template( |
|
""" |
|
### SCRAPED TEXT FROM WEBSITE: |
|
{page_data} |
|
### INSTRUCTION: |
|
The scraped text is from the career's page of a website. |
|
Your job is to extract the job postings and return them in JSON format containing the following keys: `role`, `experience`, `skills`, and `description`. |
|
Only return the valid JSON. |
|
### VALID JSON (NO PREAMBLE): |
|
""" |
|
) |
|
chain_extract = prompt_extract | self.llm |
|
res = chain_extract.invoke(input={"page_data": cleaned_text}) |
|
try: |
|
json_parser = JsonOutputParser() |
|
res = json_parser.parse(res.content) |
|
except OutputParserException: |
|
raise OutputParserException("Context too big. Unable to parse jobs.") |
|
return res if isinstance(res, list) else [res] |
|
|
|
def write_mail(self, job, links, username="Thamani", client_name="Hiring Manager", email_style="Formal"): |
|
"""Generates cold emails based on the selected style.""" |
|
|
|
style_instructions = { |
|
"Formal": "Maintain a professional and polished tone. Focus on achievements and qualifications.", |
|
"Casual": "Use a friendly, engaging tone. Keep it light while still showcasing strengths.", |
|
"Persuasive": "Be compelling and assertive. Highlight why you are the perfect fit with strong language." |
|
} |
|
|
|
|
|
email_style_lower = email_style.lower() |
|
|
|
prompt_email = PromptTemplate.from_template( |
|
""" |
|
### JOB DETAILS: |
|
- Role: {job_title} |
|
- Company: {company_name} |
|
- Experience Required: {experience} |
|
- Skills: {skills} |
|
- Description: {job_description} |
|
|
|
### INSTRUCTION: |
|
You are {username}, a motivated MCA graduate with strong technical and analytical skills, seeking an opportunity to contribute to {company_name} as a {job_title}. |
|
Craft a **{email_style} cold email** to {client_name} demonstrating your skills, projects, and value. |
|
|
|
Style Instruction: {style_instruction} |
|
|
|
Highlight relevant projects, certifications, or portfolio links: {link_list}. |
|
|
|
### EMAIL (NO PREAMBLE): |
|
""" |
|
) |
|
|
|
chain_email = prompt_email | self.llm |
|
|
|
|
|
job_title = job.get("role", "the position") |
|
company_name = job.get("company", "the company") |
|
experience = job.get("experience", "not specified") |
|
skills = ", ".join(job.get("skills", [])) or "not mentioned" |
|
job_description = job.get("description", "No description provided.") |
|
|
|
|
|
valid_links = [link for link in links if link] |
|
formatted_links = "\n".join(f"- {link}" for link in valid_links) if valid_links else "No portfolio links provided." |
|
|
|
|
|
res = chain_email.invoke({ |
|
"job_title": job_title, |
|
"company_name": company_name, |
|
"experience": experience, |
|
"skills": skills, |
|
"job_description": job_description, |
|
"link_list": formatted_links, |
|
"username": username, |
|
"client_name": client_name, |
|
"email_style": email_style_lower, |
|
"style_instruction": style_instructions[email_style] |
|
}) |
|
|
|
return res.content |
|
|
|
if __name__ == "__main__": |
|
print(os.getenv("GROQ_API_KEY")) |
|
|