Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Create models.py
Browse files
    	
        models.py
    ADDED
    
    | @@ -0,0 +1,362 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """
         | 
| 2 | 
            +
            Model management for FLUX Prompt Optimizer
         | 
| 3 | 
            +
            Handles Florence-2 and Bagel model integration
         | 
| 4 | 
            +
            """
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            import logging
         | 
| 7 | 
            +
            import requests
         | 
| 8 | 
            +
            import spaces
         | 
| 9 | 
            +
            import torch
         | 
| 10 | 
            +
            from typing import Optional, Dict, Any, Tuple
         | 
| 11 | 
            +
            from PIL import Image
         | 
| 12 | 
            +
            from transformers import AutoProcessor, AutoModelForCausalLM
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            from config import MODEL_CONFIG, get_device_config
         | 
| 15 | 
            +
            from utils import clean_memory, safe_execute
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            logger = logging.getLogger(__name__)
         | 
| 18 | 
            +
             | 
| 19 | 
            +
             | 
| 20 | 
            +
            class BaseImageAnalyzer:
         | 
| 21 | 
            +
                """Base class for image analysis models"""
         | 
| 22 | 
            +
                
         | 
| 23 | 
            +
                def __init__(self):
         | 
| 24 | 
            +
                    self.model = None
         | 
| 25 | 
            +
                    self.processor = None
         | 
| 26 | 
            +
                    self.device_config = get_device_config()
         | 
| 27 | 
            +
                    self.is_initialized = False
         | 
| 28 | 
            +
                    
         | 
| 29 | 
            +
                def initialize(self) -> bool:
         | 
| 30 | 
            +
                    """Initialize the model"""
         | 
| 31 | 
            +
                    raise NotImplementedError
         | 
| 32 | 
            +
                    
         | 
| 33 | 
            +
                def analyze_image(self, image: Image.Image) -> Tuple[str, Dict[str, Any]]:
         | 
| 34 | 
            +
                    """Analyze image and return description"""
         | 
| 35 | 
            +
                    raise NotImplementedError
         | 
| 36 | 
            +
                    
         | 
| 37 | 
            +
                def cleanup(self) -> None:
         | 
| 38 | 
            +
                    """Clean up model resources"""
         | 
| 39 | 
            +
                    if self.model is not None:
         | 
| 40 | 
            +
                        del self.model
         | 
| 41 | 
            +
                        self.model = None
         | 
| 42 | 
            +
                    if self.processor is not None:
         | 
| 43 | 
            +
                        del self.processor
         | 
| 44 | 
            +
                        self.processor = None
         | 
| 45 | 
            +
                    clean_memory()
         | 
| 46 | 
            +
             | 
| 47 | 
            +
             | 
| 48 | 
            +
            class Florence2Analyzer(BaseImageAnalyzer):
         | 
| 49 | 
            +
                """Florence-2 model for image analysis"""
         | 
| 50 | 
            +
                
         | 
| 51 | 
            +
                def __init__(self):
         | 
| 52 | 
            +
                    super().__init__()
         | 
| 53 | 
            +
                    self.config = MODEL_CONFIG["florence2"]
         | 
| 54 | 
            +
                    
         | 
| 55 | 
            +
                def initialize(self) -> bool:
         | 
| 56 | 
            +
                    """Initialize Florence-2 model"""
         | 
| 57 | 
            +
                    if self.is_initialized:
         | 
| 58 | 
            +
                        return True
         | 
| 59 | 
            +
                        
         | 
| 60 | 
            +
                    try:
         | 
| 61 | 
            +
                        logger.info("Initializing Florence-2 model...")
         | 
| 62 | 
            +
                        
         | 
| 63 | 
            +
                        model_id = self.config["model_id"]
         | 
| 64 | 
            +
                        
         | 
| 65 | 
            +
                        # Load processor
         | 
| 66 | 
            +
                        self.processor = AutoProcessor.from_pretrained(
         | 
| 67 | 
            +
                            model_id, 
         | 
| 68 | 
            +
                            trust_remote_code=self.config["trust_remote_code"]
         | 
| 69 | 
            +
                        )
         | 
| 70 | 
            +
                        
         | 
| 71 | 
            +
                        # Load model
         | 
| 72 | 
            +
                        self.model = AutoModelForCausalLM.from_pretrained(
         | 
| 73 | 
            +
                            model_id,
         | 
| 74 | 
            +
                            trust_remote_code=self.config["trust_remote_code"],
         | 
| 75 | 
            +
                            torch_dtype=self.config["torch_dtype"] if self.device_config["use_gpu"] else torch.float32
         | 
| 76 | 
            +
                        )
         | 
| 77 | 
            +
                        
         | 
| 78 | 
            +
                        # Move to appropriate device
         | 
| 79 | 
            +
                        if self.device_config["use_gpu"]:
         | 
| 80 | 
            +
                            self.model = self.model.to(self.device_config["device"])
         | 
| 81 | 
            +
                        else:
         | 
| 82 | 
            +
                            self.model = self.model.to("cpu")
         | 
| 83 | 
            +
                            
         | 
| 84 | 
            +
                        self.model.eval()
         | 
| 85 | 
            +
                        self.is_initialized = True
         | 
| 86 | 
            +
                        
         | 
| 87 | 
            +
                        logger.info(f"Florence-2 initialized on {self.device_config['device']}")
         | 
| 88 | 
            +
                        return True
         | 
| 89 | 
            +
                        
         | 
| 90 | 
            +
                    except Exception as e:
         | 
| 91 | 
            +
                        logger.error(f"Florence-2 initialization failed: {e}")
         | 
| 92 | 
            +
                        self.cleanup()
         | 
| 93 | 
            +
                        return False
         | 
| 94 | 
            +
                
         | 
| 95 | 
            +
                @spaces.GPU(duration=60)
         | 
| 96 | 
            +
                def _gpu_inference(self, image: Image.Image, task_prompt: str) -> str:
         | 
| 97 | 
            +
                    """Run inference on GPU with spaces decorator"""
         | 
| 98 | 
            +
                    try:
         | 
| 99 | 
            +
                        # Move model to GPU for inference
         | 
| 100 | 
            +
                        if self.device_config["use_gpu"]:
         | 
| 101 | 
            +
                            self.model = self.model.to("cuda")
         | 
| 102 | 
            +
                        
         | 
| 103 | 
            +
                        # Prepare inputs
         | 
| 104 | 
            +
                        inputs = self.processor(text=task_prompt, images=image, return_tensors="pt")
         | 
| 105 | 
            +
                        
         | 
| 106 | 
            +
                        # Move inputs to device
         | 
| 107 | 
            +
                        device = "cuda" if self.device_config["use_gpu"] else self.device_config["device"]
         | 
| 108 | 
            +
                        inputs = {k: v.to(device) for k, v in inputs.items()}
         | 
| 109 | 
            +
                        
         | 
| 110 | 
            +
                        # Generate response
         | 
| 111 | 
            +
                        with torch.no_grad():
         | 
| 112 | 
            +
                            if self.device_config["use_gpu"]:
         | 
| 113 | 
            +
                                with torch.cuda.amp.autocast(dtype=torch.float16):
         | 
| 114 | 
            +
                                    generated_ids = self.model.generate(
         | 
| 115 | 
            +
                                        input_ids=inputs["input_ids"],
         | 
| 116 | 
            +
                                        pixel_values=inputs["pixel_values"],
         | 
| 117 | 
            +
                                        max_new_tokens=self.config["max_new_tokens"],
         | 
| 118 | 
            +
                                        num_beams=3,
         | 
| 119 | 
            +
                                        do_sample=False
         | 
| 120 | 
            +
                                    )
         | 
| 121 | 
            +
                            else:
         | 
| 122 | 
            +
                                generated_ids = self.model.generate(
         | 
| 123 | 
            +
                                    input_ids=inputs["input_ids"],
         | 
| 124 | 
            +
                                    pixel_values=inputs["pixel_values"],
         | 
| 125 | 
            +
                                    max_new_tokens=self.config["max_new_tokens"],
         | 
| 126 | 
            +
                                    num_beams=3,
         | 
| 127 | 
            +
                                    do_sample=False
         | 
| 128 | 
            +
                                )
         | 
| 129 | 
            +
                        
         | 
| 130 | 
            +
                        # Decode response
         | 
| 131 | 
            +
                        generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
         | 
| 132 | 
            +
                        parsed = self.processor.post_process_generation(
         | 
| 133 | 
            +
                            generated_text, 
         | 
| 134 | 
            +
                            task=task_prompt, 
         | 
| 135 | 
            +
                            image_size=(image.width, image.height)
         | 
| 136 | 
            +
                        )
         | 
| 137 | 
            +
                        
         | 
| 138 | 
            +
                        # Extract caption
         | 
| 139 | 
            +
                        if task_prompt in parsed:
         | 
| 140 | 
            +
                            return parsed[task_prompt]
         | 
| 141 | 
            +
                        else:
         | 
| 142 | 
            +
                            return str(parsed) if parsed else ""
         | 
| 143 | 
            +
                            
         | 
| 144 | 
            +
                    except Exception as e:
         | 
| 145 | 
            +
                        logger.error(f"Florence-2 GPU inference failed: {e}")
         | 
| 146 | 
            +
                        return ""
         | 
| 147 | 
            +
                    finally:
         | 
| 148 | 
            +
                        # Move model back to CPU to free GPU memory
         | 
| 149 | 
            +
                        if self.device_config["use_gpu"]:
         | 
| 150 | 
            +
                            self.model = self.model.to("cpu")
         | 
| 151 | 
            +
                            clean_memory()
         | 
| 152 | 
            +
                
         | 
| 153 | 
            +
                def analyze_image(self, image: Image.Image) -> Tuple[str, Dict[str, Any]]:
         | 
| 154 | 
            +
                    """Analyze image using Florence-2"""
         | 
| 155 | 
            +
                    if not self.is_initialized:
         | 
| 156 | 
            +
                        success = self.initialize()
         | 
| 157 | 
            +
                        if not success:
         | 
| 158 | 
            +
                            return "Model initialization failed", {"error": "Florence-2 not available"}
         | 
| 159 | 
            +
                    
         | 
| 160 | 
            +
                    try:
         | 
| 161 | 
            +
                        # Define analysis tasks
         | 
| 162 | 
            +
                        tasks = {
         | 
| 163 | 
            +
                            "detailed": "<DETAILED_CAPTION>",
         | 
| 164 | 
            +
                            "more_detailed": "<MORE_DETAILED_CAPTION>",
         | 
| 165 | 
            +
                            "caption": "<CAPTION>"
         | 
| 166 | 
            +
                        }
         | 
| 167 | 
            +
                        
         | 
| 168 | 
            +
                        results = {}
         | 
| 169 | 
            +
                        
         | 
| 170 | 
            +
                        # Run analysis for each task
         | 
| 171 | 
            +
                        for task_name, task_prompt in tasks.items():
         | 
| 172 | 
            +
                            if self.device_config["use_gpu"]:
         | 
| 173 | 
            +
                                result = self._gpu_inference(image, task_prompt)
         | 
| 174 | 
            +
                            else:
         | 
| 175 | 
            +
                                result = self._cpu_inference(image, task_prompt)
         | 
| 176 | 
            +
                            results[task_name] = result
         | 
| 177 | 
            +
                        
         | 
| 178 | 
            +
                        # Choose best result
         | 
| 179 | 
            +
                        if results["more_detailed"]:
         | 
| 180 | 
            +
                            main_description = results["more_detailed"]
         | 
| 181 | 
            +
                        elif results["detailed"]:
         | 
| 182 | 
            +
                            main_description = results["detailed"]
         | 
| 183 | 
            +
                        else:
         | 
| 184 | 
            +
                            main_description = results["caption"] or "A photograph"
         | 
| 185 | 
            +
                        
         | 
| 186 | 
            +
                        # Prepare metadata
         | 
| 187 | 
            +
                        metadata = {
         | 
| 188 | 
            +
                            "model": "Florence-2",
         | 
| 189 | 
            +
                            "device": self.device_config["device"],
         | 
| 190 | 
            +
                            "all_results": results,
         | 
| 191 | 
            +
                            "confidence": 0.85  # Florence-2 generally reliable
         | 
| 192 | 
            +
                        }
         | 
| 193 | 
            +
                        
         | 
| 194 | 
            +
                        logger.info(f"Florence-2 analysis complete: {len(main_description)} chars")
         | 
| 195 | 
            +
                        return main_description, metadata
         | 
| 196 | 
            +
                        
         | 
| 197 | 
            +
                    except Exception as e:
         | 
| 198 | 
            +
                        logger.error(f"Florence-2 analysis failed: {e}")
         | 
| 199 | 
            +
                        return "Analysis failed", {"error": str(e)}
         | 
| 200 | 
            +
                
         | 
| 201 | 
            +
                def _cpu_inference(self, image: Image.Image, task_prompt: str) -> str:
         | 
| 202 | 
            +
                    """Run inference on CPU"""
         | 
| 203 | 
            +
                    try:
         | 
| 204 | 
            +
                        inputs = self.processor(text=task_prompt, images=image, return_tensors="pt")
         | 
| 205 | 
            +
                        
         | 
| 206 | 
            +
                        with torch.no_grad():
         | 
| 207 | 
            +
                            generated_ids = self.model.generate(
         | 
| 208 | 
            +
                                input_ids=inputs["input_ids"],
         | 
| 209 | 
            +
                                pixel_values=inputs["pixel_values"],
         | 
| 210 | 
            +
                                max_new_tokens=self.config["max_new_tokens"],
         | 
| 211 | 
            +
                                num_beams=2,  # Reduced for CPU
         | 
| 212 | 
            +
                                do_sample=False
         | 
| 213 | 
            +
                            )
         | 
| 214 | 
            +
                        
         | 
| 215 | 
            +
                        generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
         | 
| 216 | 
            +
                        parsed = self.processor.post_process_generation(
         | 
| 217 | 
            +
                            generated_text, 
         | 
| 218 | 
            +
                            task=task_prompt, 
         | 
| 219 | 
            +
                            image_size=(image.width, image.height)
         | 
| 220 | 
            +
                        )
         | 
| 221 | 
            +
                        
         | 
| 222 | 
            +
                        if task_prompt in parsed:
         | 
| 223 | 
            +
                            return parsed[task_prompt]
         | 
| 224 | 
            +
                        else:
         | 
| 225 | 
            +
                            return str(parsed) if parsed else ""
         | 
| 226 | 
            +
                            
         | 
| 227 | 
            +
                    except Exception as e:
         | 
| 228 | 
            +
                        logger.error(f"Florence-2 CPU inference failed: {e}")
         | 
| 229 | 
            +
                        return ""
         | 
| 230 | 
            +
             | 
| 231 | 
            +
             | 
| 232 | 
            +
            class BagelAnalyzer(BaseImageAnalyzer):
         | 
| 233 | 
            +
                """Bagel-7B model analyzer via API"""
         | 
| 234 | 
            +
                
         | 
| 235 | 
            +
                def __init__(self):
         | 
| 236 | 
            +
                    super().__init__()
         | 
| 237 | 
            +
                    self.config = MODEL_CONFIG["bagel"]
         | 
| 238 | 
            +
                    self.session = requests.Session()
         | 
| 239 | 
            +
                    
         | 
| 240 | 
            +
                def initialize(self) -> bool:
         | 
| 241 | 
            +
                    """Initialize Bagel analyzer (API-based)"""
         | 
| 242 | 
            +
                    try:
         | 
| 243 | 
            +
                        # Test API connectivity
         | 
| 244 | 
            +
                        test_response = self.session.get(
         | 
| 245 | 
            +
                            self.config["api_url"],
         | 
| 246 | 
            +
                            timeout=self.config["timeout"]
         | 
| 247 | 
            +
                        )
         | 
| 248 | 
            +
                        
         | 
| 249 | 
            +
                        if test_response.status_code == 200:
         | 
| 250 | 
            +
                            self.is_initialized = True
         | 
| 251 | 
            +
                            logger.info("Bagel API connection established")
         | 
| 252 | 
            +
                            return True
         | 
| 253 | 
            +
                        else:
         | 
| 254 | 
            +
                            logger.error(f"Bagel API not accessible: {test_response.status_code}")
         | 
| 255 | 
            +
                            return False
         | 
| 256 | 
            +
                            
         | 
| 257 | 
            +
                    except Exception as e:
         | 
| 258 | 
            +
                        logger.error(f"Bagel initialization failed: {e}")
         | 
| 259 | 
            +
                        return False
         | 
| 260 | 
            +
                
         | 
| 261 | 
            +
                def analyze_image(self, image: Image.Image) -> Tuple[str, Dict[str, Any]]:
         | 
| 262 | 
            +
                    """Analyze image using Bagel-7B API"""
         | 
| 263 | 
            +
                    if not self.is_initialized:
         | 
| 264 | 
            +
                        success = self.initialize()
         | 
| 265 | 
            +
                        if not success:
         | 
| 266 | 
            +
                            return "Bagel API not available", {"error": "API connection failed"}
         | 
| 267 | 
            +
                    
         | 
| 268 | 
            +
                    try:
         | 
| 269 | 
            +
                        # Convert image to base64 or prepare for API call
         | 
| 270 | 
            +
                        # Note: This is a placeholder - actual implementation would depend on Bagel API format
         | 
| 271 | 
            +
                        
         | 
| 272 | 
            +
                        # For now, return a placeholder response
         | 
| 273 | 
            +
                        # In real implementation, you would:
         | 
| 274 | 
            +
                        # 1. Convert image to required format
         | 
| 275 | 
            +
                        # 2. Make API call to Bagel endpoint
         | 
| 276 | 
            +
                        # 3. Parse response
         | 
| 277 | 
            +
                        
         | 
| 278 | 
            +
                        description = "Detailed image analysis via Bagel-7B (API implementation needed)"
         | 
| 279 | 
            +
                        metadata = {
         | 
| 280 | 
            +
                            "model": "Bagel-7B",
         | 
| 281 | 
            +
                            "method": "API",
         | 
| 282 | 
            +
                            "confidence": 0.8
         | 
| 283 | 
            +
                        }
         | 
| 284 | 
            +
                        
         | 
| 285 | 
            +
                        logger.info("Bagel analysis complete (placeholder)")
         | 
| 286 | 
            +
                        return description, metadata
         | 
| 287 | 
            +
                        
         | 
| 288 | 
            +
                    except Exception as e:
         | 
| 289 | 
            +
                        logger.error(f"Bagel analysis failed: {e}")
         | 
| 290 | 
            +
                        return "Analysis failed", {"error": str(e)}
         | 
| 291 | 
            +
             | 
| 292 | 
            +
             | 
| 293 | 
            +
            class ModelManager:
         | 
| 294 | 
            +
                """Manager for handling multiple analysis models"""
         | 
| 295 | 
            +
                
         | 
| 296 | 
            +
                def __init__(self, preferred_model: str = None):
         | 
| 297 | 
            +
                    self.preferred_model = preferred_model or MODEL_CONFIG["primary_model"]
         | 
| 298 | 
            +
                    self.analyzers = {}
         | 
| 299 | 
            +
                    self.current_analyzer = None
         | 
| 300 | 
            +
                    
         | 
| 301 | 
            +
                def get_analyzer(self, model_name: str = None) -> Optional[BaseImageAnalyzer]:
         | 
| 302 | 
            +
                    """Get or create analyzer for specified model"""
         | 
| 303 | 
            +
                    model_name = model_name or self.preferred_model
         | 
| 304 | 
            +
                    
         | 
| 305 | 
            +
                    if model_name not in self.analyzers:
         | 
| 306 | 
            +
                        if model_name == "florence2":
         | 
| 307 | 
            +
                            self.analyzers[model_name] = Florence2Analyzer()
         | 
| 308 | 
            +
                        elif model_name == "bagel":
         | 
| 309 | 
            +
                            self.analyzers[model_name] = BagelAnalyzer()
         | 
| 310 | 
            +
                        else:
         | 
| 311 | 
            +
                            logger.error(f"Unknown model: {model_name}")
         | 
| 312 | 
            +
                            return None
         | 
| 313 | 
            +
                    
         | 
| 314 | 
            +
                    return self.analyzers[model_name]
         | 
| 315 | 
            +
                
         | 
| 316 | 
            +
                def analyze_image(self, image: Image.Image, model_name: str = None) -> Tuple[str, Dict[str, Any]]:
         | 
| 317 | 
            +
                    """Analyze image with specified or preferred model"""
         | 
| 318 | 
            +
                    analyzer = self.get_analyzer(model_name)
         | 
| 319 | 
            +
                    if analyzer is None:
         | 
| 320 | 
            +
                        return "No analyzer available", {"error": "Model not found"}
         | 
| 321 | 
            +
                    
         | 
| 322 | 
            +
                    success, result = safe_execute(analyzer.analyze_image, image)
         | 
| 323 | 
            +
                    if success:
         | 
| 324 | 
            +
                        return result
         | 
| 325 | 
            +
                    else:
         | 
| 326 | 
            +
                        return "Analysis failed", {"error": result}
         | 
| 327 | 
            +
                
         | 
| 328 | 
            +
                def cleanup_all(self) -> None:
         | 
| 329 | 
            +
                    """Clean up all model resources"""
         | 
| 330 | 
            +
                    for analyzer in self.analyzers.values():
         | 
| 331 | 
            +
                        analyzer.cleanup()
         | 
| 332 | 
            +
                    self.analyzers.clear()
         | 
| 333 | 
            +
                    clean_memory()
         | 
| 334 | 
            +
             | 
| 335 | 
            +
             | 
| 336 | 
            +
            # Global model manager instance
         | 
| 337 | 
            +
            model_manager = ModelManager()
         | 
| 338 | 
            +
             | 
| 339 | 
            +
             | 
| 340 | 
            +
            def analyze_image(image: Image.Image, model_name: str = None) -> Tuple[str, Dict[str, Any]]:
         | 
| 341 | 
            +
                """
         | 
| 342 | 
            +
                Convenience function for image analysis
         | 
| 343 | 
            +
                
         | 
| 344 | 
            +
                Args:
         | 
| 345 | 
            +
                    image: PIL Image to analyze
         | 
| 346 | 
            +
                    model_name: Optional model name ("florence2" or "bagel")
         | 
| 347 | 
            +
                    
         | 
| 348 | 
            +
                Returns:
         | 
| 349 | 
            +
                    Tuple of (description, metadata)
         | 
| 350 | 
            +
                """
         | 
| 351 | 
            +
                return model_manager.analyze_image(image, model_name)
         | 
| 352 | 
            +
             | 
| 353 | 
            +
             | 
| 354 | 
            +
            # Export main components
         | 
| 355 | 
            +
            __all__ = [
         | 
| 356 | 
            +
                "BaseImageAnalyzer",
         | 
| 357 | 
            +
                "Florence2Analyzer", 
         | 
| 358 | 
            +
                "BagelAnalyzer",
         | 
| 359 | 
            +
                "ModelManager",
         | 
| 360 | 
            +
                "model_manager",
         | 
| 361 | 
            +
                "analyze_image"
         | 
| 362 | 
            +
            ]
         |