File size: 15,362 Bytes
c8ddb9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
"""Pytorch Dataset classes for the datasets used in the project."""
import os
import pickle
from collections import defaultdict
from typing import Any
import nltk
import numpy as np
import pandas as pd
import torch
import torchvision.transforms.functional as F
from nltk.tokenize import RegexpTokenizer
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
class TextImageDataset(Dataset): # type: ignore
"""Custom PyTorch Dataset class to load Image and Text data."""
# pylint: disable=too-many-instance-attributes
# pylint: disable=too-many-locals
# pylint: disable=too-many-function-args
def __init__(
self, data_path: str, split: str, num_captions: int, transform: Any = None
):
"""
:param data_path: Path to the data directory. [i.e. can be './birds/', or './coco/]
:param split: 'train' or 'test' split
:param num_captions: number of captions present per image.
[For birds, this is 10, for coco, this is 5]
:param transform: PyTorch transform to apply to the images.
"""
self.transform = transform
self.bound_box_map = None
self.file_names = self.load_filenames(data_path, split)
self.data_path = data_path
self.num_captions_per_image = num_captions
(
self.captions,
self.ix_to_word,
self.word_to_ix,
self.vocab_len,
) = self.get_capt_and_vocab(data_path, split)
self.normalize = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
self.class_ids = self.get_class_id(data_path, split, len(self.file_names))
if self.data_path.endswith("birds/"):
self.bound_box_map = self.get_bound_box(data_path)
elif self.data_path.endswith("coco/"):
pass
else:
raise ValueError(
"Invalid data path. Please ensure the data [CUB/COCO] is stored in correct folders."
)
def __len__(self) -> int:
"""Return the length of the dataset."""
return len(self.file_names)
def __getitem__(self, idx: int) -> Any:
"""
Return the item at index idx.
:param idx: index of the item to return
:return img_tensor: image tensor
:return correct_caption: correct caption for the image [list of word indices]
:return curr_class_id: class id of the image
:return word_labels: POS_tagged word labels [1 for noun and adjective, 0 else]
"""
file_name = self.file_names[idx]
curr_class_id = self.class_ids[idx]
if self.bound_box_map is not None:
bbox = self.bound_box_map[file_name]
images_dir = os.path.join(self.data_path, "CUB_200_2011/images")
else:
bbox = None
images_dir = os.path.join(self.data_path, "images")
img_path = os.path.join(images_dir, file_name + ".jpg")
img_tensor = self.get_image(img_path, bbox, self.transform)
rand_sent_idx = np.random.randint(0, self.num_captions_per_image)
rand_sent_idx = idx * self.num_captions_per_image + rand_sent_idx
correct_caption = torch.tensor(self.captions[rand_sent_idx], dtype=torch.int64)
num_words = len(correct_caption)
capt_token_list = []
for i in range(num_words):
capt_token_list.append(self.ix_to_word[correct_caption[i].item()])
pos_tag_list = nltk.tag.pos_tag(capt_token_list)
word_labels = []
for pos_tag in pos_tag_list:
if (
"NN" in pos_tag[1] or "JJ" in pos_tag[1]
): # check for Nouns and Adjective only
word_labels.append(1)
else:
word_labels.append(0)
word_labels = torch.tensor(word_labels).float() # type: ignore
curr_class_id = torch.tensor(curr_class_id, dtype=torch.int64).unsqueeze(0)
return (
img_tensor,
correct_caption,
curr_class_id,
word_labels,
)
def get_capt_and_vocab(self, data_dir: str, split: str) -> Any:
"""
Helper function to get the captions, vocab dict for each image.
:param data_dir: path to the data directory [i.e. './birds/' or './coco/']
:param split: 'train' or 'test' split
:return captions: list of all captions for each image
:return ix_to_word: dictionary mapping index to word
:return word_to_ix: dictionary mapping word to index
:return num_words: number of unique words in the vocabulary
"""
captions_ckpt_path = os.path.join(data_dir, "stubs/captions.pickle")
if os.path.exists(
captions_ckpt_path
): # check if previously processed captions exist
with open(captions_ckpt_path, "rb") as ckpt_file:
captions = pickle.load(ckpt_file)
train_captions, test_captions = captions[0], captions[1]
ix_to_word, word_to_ix = captions[2], captions[3]
num_words = len(ix_to_word)
del captions
if split == "train":
return train_captions, ix_to_word, word_to_ix, num_words
return test_captions, ix_to_word, word_to_ix, num_words
else: # if not, process the captions and save them
train_files = self.load_filenames(data_dir, "train")
test_files = self.load_filenames(data_dir, "test")
train_captions_tokenized = self.get_tokenized_captions(
data_dir, train_files
)
test_captions_tokenized = self.get_tokenized_captions(
data_dir, test_files
) # we need both train and test captions to build the vocab
(
train_captions,
test_captions,
ix_to_word,
word_to_ix,
num_words,
) = self.build_vocab( # type: ignore
train_captions_tokenized, test_captions_tokenized, split
)
vocab_list = [train_captions, test_captions, ix_to_word, word_to_ix]
with open(captions_ckpt_path, "wb") as ckpt_file:
pickle.dump(vocab_list, ckpt_file)
if split == "train":
return train_captions, ix_to_word, word_to_ix, num_words
if split == "test":
return test_captions, ix_to_word, word_to_ix, num_words
raise ValueError("Invalid split. Please use 'train' or 'test'")
def build_vocab(
self, tokenized_captions_train: list, tokenized_captions_test: list # type: ignore
) -> Any:
"""
Helper function which builds the vocab dicts.
:param tokenized_captions_train: list containing all the
train tokenized captions in the dataset. This is list of lists.
:param tokenized_captions_test: list containing all the
test tokenized captions in the dataset. This is list of lists.
:return train_captions_int: list of all captions in training,
where each word is replaced by its index in the vocab
:return test_captions_int: list of all captions in test,
where each word is replaced by its index in the vocab
:return ix_to_word: dictionary mapping index to word
:return word_to_ix: dictionary mapping word to index
:return num_words: number of unique words in the vocabulary
"""
vocab = defaultdict(int) # type: ignore
total_captions = tokenized_captions_train + tokenized_captions_test
for caption in total_captions:
for word in caption:
vocab[word] += 1
# sort vocab dict by frequency in descending order
vocab = sorted(vocab.items(), key=lambda x: x[1], reverse=True) # type: ignore
ix_to_word = {}
word_to_ix = {}
ix_to_word[0] = "<end>"
word_to_ix["<end>"] = 0
word_idx = 1
for word, _ in vocab:
word_to_ix[word] = word_idx
ix_to_word[word_idx] = word
word_idx += 1
train_captions_int = [] # we want to convert words to indices in vocab.
for caption in tokenized_captions_train:
curr_caption_int = []
for word in caption:
curr_caption_int.append(word_to_ix[word])
train_captions_int.append(curr_caption_int)
test_captions_int = []
for caption in tokenized_captions_test:
curr_caption_int = []
for word in caption:
curr_caption_int.append(word_to_ix[word])
test_captions_int.append(curr_caption_int)
return (
train_captions_int,
test_captions_int,
ix_to_word,
word_to_ix,
len(ix_to_word),
)
def get_tokenized_captions(self, data_dir: str, filenames: list) -> Any: # type: ignore
"""
Helper function to tokenize and return captions for each image in filenames.
:param data_dir: path to the data directory [i.e. './birds/' or './coco/']
:param filenames: list of all filenames corresponding to the split
:return tokenized_captions: list of all tokenized captions for all files in filenames.
[this returns a list, where each element is again a list of tokens/words]
"""
all_captions = []
for filename in filenames:
caption_path = os.path.join(data_dir, "text", filename + ".txt")
with open(caption_path, "r", encoding="utf8") as txt_file:
captions = txt_file.readlines()
count = 0
for caption in captions:
if len(caption) == 0:
continue
caption = caption.replace("\ufffd\ufffd", " ")
tokenizer = RegexpTokenizer(r"\w+")
tokens = tokenizer.tokenize(
caption.lower()
) # splits current caption/line to list of words/tokens
if len(tokens) == 0:
continue
tokens = [
t.encode("ascii", "ignore").decode("ascii") for t in tokens
]
tokens = [t for t in tokens if len(t) > 0]
all_captions.append(tokens)
count += 1
if count == self.num_captions_per_image:
break
if count < self.num_captions_per_image:
raise ValueError(
f"Number of captions for {filename} is only {count},\
which is less than {self.num_captions_per_image}."
)
return all_captions
def get_image(self, img_path: str, bbox: list, transform: Any) -> Any: # type: ignore
"""
Helper function to load and transform an image.
:param img_path: path to the image
:param bbox: bounding box coordinates [x, y, width, height]
:param transform: PyTorch transform to apply to the image
:return img_tensor: transformed image tensor
"""
img = Image.open(img_path).convert("RGB")
width, height = img.size
if bbox is not None:
r_val = int(np.maximum(bbox[2], bbox[3]) * 0.75)
center_x = int((2 * bbox[0] + bbox[2]) / 2)
center_y = int((2 * bbox[1] + bbox[3]) / 2)
y1_coord = np.maximum(0, center_y - r_val)
y2_coord = np.minimum(height, center_y + r_val)
x1_coord = np.maximum(0, center_x - r_val)
x2_coord = np.minimum(width, center_x + r_val)
img = img.crop(
[x1_coord, y1_coord, x2_coord, y2_coord]
) # This preprocessing steps seems to follow from
# Stackgan: Text to photo-realistic image synthesis
if transform is not None:
img_tensor = transform(img) # this scales to 304x304, i.e. 256 x (76/64).
x_val = np.random.randint(0, 48) # 304 - 256 = 48
y_val = np.random.randint(0, 48)
flip = np.random.rand() > 0.5
# crop
img_tensor = img_tensor.crop(
[x_val, y_val, x_val + 256, y_val + 256]
) # this crops to 256x256
if flip:
img_tensor = F.hflip(img_tensor)
img_tensor = self.normalize(img_tensor)
return img_tensor
def load_filenames(self, data_dir: str, split: str) -> Any:
"""
Helper function to get list of all image filenames.
:param data_dir: path to the data directory [i.e. './birds/' or './coco/']
:param split: 'train' or 'test' split
:return filenames: list of all image filenames
"""
filepath = f"{data_dir}{split}/filenames.pickle"
if os.path.isfile(filepath):
with open(filepath, "rb") as pick_file:
filenames = pickle.load(pick_file)
else:
raise ValueError(
"Invalid split. Please use 'train' or 'test',\
or make sure the filenames.pickle file exists."
)
return filenames
def get_class_id(self, data_dir: str, split: str, total_elems: int) -> Any:
"""
Helper function to get list of all image class ids.
:param data_dir: path to the data directory [i.e. './birds/' or './coco/']
:param split: 'train' or 'test' split
:param total_elems: total number of elements in the dataset
:return class_ids: list of all image class ids
"""
filepath = f"{data_dir}{split}/class_info.pickle"
if os.path.isfile(filepath):
with open(filepath, "rb") as class_file:
class_ids = pickle.load(class_file, encoding="latin1")
else:
class_ids = np.arange(total_elems)
return class_ids
def get_bound_box(self, data_path: str) -> Any:
"""
Helper function to get the bounding box for birds dataset.
:param data_path: path to birds data directory [i.e. './data/birds/']
:return imageToBox: dictionary mapping image name to bounding box coordinates
"""
bbox_path = os.path.join(data_path, "CUB_200_2011/bounding_boxes.txt")
df_bounding_boxes = pd.read_csv(
bbox_path, delim_whitespace=True, header=None
).astype(int)
filepath = os.path.join(data_path, "CUB_200_2011/images.txt")
df_filenames = pd.read_csv(filepath, delim_whitespace=True, header=None)
filenames = df_filenames[
1
].tolist() # df_filenames[0] just contains the index or ID.
img_to_box = { # type: ignore
img_file[:-4]: [] for img_file in filenames
} # remove the .jpg extension from the names
num_imgs = len(filenames)
for i in range(0, num_imgs):
bbox = df_bounding_boxes.iloc[i][1:].tolist()
key = filenames[i][:-4]
img_to_box[key] = bbox
return img_to_box
|