Spaces:
No application file
No application file
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| from typing import Any, Dict, List, Tuple | |
| import torch | |
| from torch.nn import functional as F | |
| from detectron2.config import CfgNode | |
| from detectron2.structures import Instances | |
| from densepose.converters.base import IntTupleBox | |
| from densepose.data.utils import get_class_to_mesh_name_mapping | |
| from densepose.modeling.cse.utils import squared_euclidean_distance_matrix | |
| from densepose.structures import DensePoseDataRelative | |
| from .densepose_base import DensePoseBaseSampler | |
| class DensePoseCSEBaseSampler(DensePoseBaseSampler): | |
| """ | |
| Base DensePose sampler to produce DensePose data from DensePose predictions. | |
| Samples for each class are drawn according to some distribution over all pixels estimated | |
| to belong to that class. | |
| """ | |
| def __init__( | |
| self, | |
| cfg: CfgNode, | |
| use_gt_categories: bool, | |
| embedder: torch.nn.Module, | |
| count_per_class: int = 8, | |
| ): | |
| """ | |
| Constructor | |
| Args: | |
| cfg (CfgNode): the config of the model | |
| embedder (torch.nn.Module): necessary to compute mesh vertex embeddings | |
| count_per_class (int): the sampler produces at most `count_per_class` | |
| samples for each category | |
| """ | |
| super().__init__(count_per_class) | |
| self.embedder = embedder | |
| self.class_to_mesh_name = get_class_to_mesh_name_mapping(cfg) | |
| self.use_gt_categories = use_gt_categories | |
| def _sample(self, instance: Instances, bbox_xywh: IntTupleBox) -> Dict[str, List[Any]]: | |
| """ | |
| Sample DensPoseDataRelative from estimation results | |
| """ | |
| if self.use_gt_categories: | |
| instance_class = instance.dataset_classes.tolist()[0] | |
| else: | |
| instance_class = instance.pred_classes.tolist()[0] | |
| mesh_name = self.class_to_mesh_name[instance_class] | |
| annotation = { | |
| DensePoseDataRelative.X_KEY: [], | |
| DensePoseDataRelative.Y_KEY: [], | |
| DensePoseDataRelative.VERTEX_IDS_KEY: [], | |
| DensePoseDataRelative.MESH_NAME_KEY: mesh_name, | |
| } | |
| mask, embeddings, other_values = self._produce_mask_and_results(instance, bbox_xywh) | |
| indices = torch.nonzero(mask, as_tuple=True) | |
| selected_embeddings = embeddings.permute(1, 2, 0)[indices].cpu() | |
| values = other_values[:, indices[0], indices[1]] | |
| k = values.shape[1] | |
| count = min(self.count_per_class, k) | |
| if count <= 0: | |
| return annotation | |
| index_sample = self._produce_index_sample(values, count) | |
| closest_vertices = squared_euclidean_distance_matrix( | |
| selected_embeddings[index_sample], self.embedder(mesh_name) | |
| ) | |
| closest_vertices = torch.argmin(closest_vertices, dim=1) | |
| sampled_y = indices[0][index_sample] + 0.5 | |
| sampled_x = indices[1][index_sample] + 0.5 | |
| # prepare / normalize data | |
| _, _, w, h = bbox_xywh | |
| x = (sampled_x / w * 256.0).cpu().tolist() | |
| y = (sampled_y / h * 256.0).cpu().tolist() | |
| # extend annotations | |
| annotation[DensePoseDataRelative.X_KEY].extend(x) | |
| annotation[DensePoseDataRelative.Y_KEY].extend(y) | |
| annotation[DensePoseDataRelative.VERTEX_IDS_KEY].extend(closest_vertices.cpu().tolist()) | |
| return annotation | |
| def _produce_mask_and_results( | |
| self, instance: Instances, bbox_xywh: IntTupleBox | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
| """ | |
| Method to get labels and DensePose results from an instance | |
| Args: | |
| instance (Instances): an instance of `DensePoseEmbeddingPredictorOutput` | |
| bbox_xywh (IntTupleBox): the corresponding bounding box | |
| Return: | |
| mask (torch.Tensor): shape [H, W], DensePose segmentation mask | |
| embeddings (Tuple[torch.Tensor]): a tensor of shape [D, H, W], | |
| DensePose CSE Embeddings | |
| other_values (Tuple[torch.Tensor]): a tensor of shape [0, H, W], | |
| for potential other values | |
| """ | |
| densepose_output = instance.pred_densepose | |
| S = densepose_output.coarse_segm | |
| E = densepose_output.embedding | |
| _, _, w, h = bbox_xywh | |
| embeddings = F.interpolate(E, size=(h, w), mode="bilinear")[0] | |
| coarse_segm_resized = F.interpolate(S, size=(h, w), mode="bilinear")[0] | |
| mask = coarse_segm_resized.argmax(0) > 0 | |
| other_values = torch.empty((0, h, w), device=E.device) | |
| return mask, embeddings, other_values | |
| def _resample_mask(self, output: Any) -> torch.Tensor: | |
| """ | |
| Convert DensePose predictor output to segmentation annotation - tensors of size | |
| (256, 256) and type `int64`. | |
| Args: | |
| output: DensePose predictor output with the following attributes: | |
| - coarse_segm: tensor of size [N, D, H, W] with unnormalized coarse | |
| segmentation scores | |
| Return: | |
| Tensor of size (S, S) and type `int64` with coarse segmentation annotations, | |
| where S = DensePoseDataRelative.MASK_SIZE | |
| """ | |
| sz = DensePoseDataRelative.MASK_SIZE | |
| mask = ( | |
| F.interpolate(output.coarse_segm, (sz, sz), mode="bilinear", align_corners=False) | |
| .argmax(dim=1) | |
| .long() | |
| .squeeze() | |
| .cpu() | |
| ) | |
| return mask | |