Spaces:
Build error
Build error
Upload 11 files
Browse files- ip_adapter/__init__.py +11 -0
- ip_adapter/__pycache__/__init__.cpython-310.pyc +0 -0
- ip_adapter/__pycache__/attention_processor.cpython-310.pyc +0 -0
- ip_adapter/__pycache__/ip_adapter.cpython-310.pyc +0 -0
- ip_adapter/__pycache__/resampler.cpython-310.pyc +0 -0
- ip_adapter/__pycache__/utils.cpython-310.pyc +0 -0
- ip_adapter/attention_processor.py +0 -0
- ip_adapter/ip_adapter.py +907 -0
- ip_adapter/resampler.py +188 -0
- ip_adapter/test_resampler.py +44 -0
- ip_adapter/utils.py +5 -0
ip_adapter/__init__.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .ip_adapter import IPAdapter, IPAdapterPlus, IPAdapterPlusXL, IPAdapterXL, IPAdapterFull,IPAdapterPlus_Lora,IPAdapterPlus_Lora_up
|
| 2 |
+
|
| 3 |
+
__all__ = [
|
| 4 |
+
"IPAdapter",
|
| 5 |
+
"IPAdapterPlus",
|
| 6 |
+
"IPAdapterPlusXL",
|
| 7 |
+
"IPAdapterXL",
|
| 8 |
+
"IPAdapterFull",
|
| 9 |
+
"IPAdapterPlus_Lora",
|
| 10 |
+
'IPAdapterPlus_Lora_up',
|
| 11 |
+
]
|
ip_adapter/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (362 Bytes). View file
|
|
|
ip_adapter/__pycache__/attention_processor.cpython-310.pyc
ADDED
|
Binary file (30.8 kB). View file
|
|
|
ip_adapter/__pycache__/ip_adapter.cpython-310.pyc
ADDED
|
Binary file (14.9 kB). View file
|
|
|
ip_adapter/__pycache__/resampler.cpython-310.pyc
ADDED
|
Binary file (4.77 kB). View file
|
|
|
ip_adapter/__pycache__/utils.cpython-310.pyc
ADDED
|
Binary file (360 Bytes). View file
|
|
|
ip_adapter/attention_processor.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ip_adapter/ip_adapter.py
ADDED
|
@@ -0,0 +1,907 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import List
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from diffusers import StableDiffusionPipeline
|
| 6 |
+
from diffusers.pipelines.controlnet import MultiControlNetModel
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from safetensors import safe_open
|
| 9 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
| 10 |
+
|
| 11 |
+
from .utils import is_torch2_available
|
| 12 |
+
|
| 13 |
+
if is_torch2_available():
|
| 14 |
+
from .attention_processor import (
|
| 15 |
+
AttnProcessor2_0 as AttnProcessor,
|
| 16 |
+
)
|
| 17 |
+
from .attention_processor import (
|
| 18 |
+
CNAttnProcessor2_0 as CNAttnProcessor,
|
| 19 |
+
)
|
| 20 |
+
from .attention_processor import (
|
| 21 |
+
IPAttnProcessor2_0 as IPAttnProcessor,
|
| 22 |
+
)
|
| 23 |
+
from .attention_processor import IPAttnProcessor2_0_Lora
|
| 24 |
+
# else:
|
| 25 |
+
# from .attention_processor import AttnProcessor, CNAttnProcessor, IPAttnProcessor
|
| 26 |
+
from .resampler import Resampler
|
| 27 |
+
from diffusers.models.lora import LoRALinearLayer
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
class ImageProjModel(torch.nn.Module):
|
| 31 |
+
"""Projection Model"""
|
| 32 |
+
|
| 33 |
+
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
|
| 34 |
+
super().__init__()
|
| 35 |
+
|
| 36 |
+
self.cross_attention_dim = cross_attention_dim
|
| 37 |
+
self.clip_extra_context_tokens = clip_extra_context_tokens
|
| 38 |
+
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
|
| 39 |
+
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
| 40 |
+
|
| 41 |
+
def forward(self, image_embeds):
|
| 42 |
+
embeds = image_embeds
|
| 43 |
+
clip_extra_context_tokens = self.proj(embeds).reshape(
|
| 44 |
+
-1, self.clip_extra_context_tokens, self.cross_attention_dim
|
| 45 |
+
)
|
| 46 |
+
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
| 47 |
+
return clip_extra_context_tokens
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class MLPProjModel(torch.nn.Module):
|
| 51 |
+
"""SD model with image prompt"""
|
| 52 |
+
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024):
|
| 53 |
+
super().__init__()
|
| 54 |
+
|
| 55 |
+
self.proj = torch.nn.Sequential(
|
| 56 |
+
torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
|
| 57 |
+
torch.nn.GELU(),
|
| 58 |
+
torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
|
| 59 |
+
torch.nn.LayerNorm(cross_attention_dim)
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
def forward(self, image_embeds):
|
| 63 |
+
clip_extra_context_tokens = self.proj(image_embeds)
|
| 64 |
+
return clip_extra_context_tokens
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class IPAdapter:
|
| 68 |
+
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4):
|
| 69 |
+
self.device = device
|
| 70 |
+
self.image_encoder_path = image_encoder_path
|
| 71 |
+
self.ip_ckpt = ip_ckpt
|
| 72 |
+
self.num_tokens = num_tokens
|
| 73 |
+
|
| 74 |
+
self.pipe = sd_pipe.to(self.device)
|
| 75 |
+
self.set_ip_adapter()
|
| 76 |
+
|
| 77 |
+
# load image encoder
|
| 78 |
+
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
|
| 79 |
+
self.device, dtype=torch.float16
|
| 80 |
+
)
|
| 81 |
+
self.clip_image_processor = CLIPImageProcessor()
|
| 82 |
+
# image proj model
|
| 83 |
+
self.image_proj_model = self.init_proj()
|
| 84 |
+
|
| 85 |
+
self.load_ip_adapter()
|
| 86 |
+
|
| 87 |
+
def init_proj(self):
|
| 88 |
+
image_proj_model = ImageProjModel(
|
| 89 |
+
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
| 90 |
+
clip_embeddings_dim=self.image_encoder.config.projection_dim,
|
| 91 |
+
clip_extra_context_tokens=self.num_tokens,
|
| 92 |
+
).to(self.device, dtype=torch.float16)
|
| 93 |
+
return image_proj_model
|
| 94 |
+
|
| 95 |
+
def set_ip_adapter(self):
|
| 96 |
+
unet = self.pipe.unet
|
| 97 |
+
attn_procs = {}
|
| 98 |
+
for name in unet.attn_processors.keys():
|
| 99 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
| 100 |
+
if name.startswith("mid_block"):
|
| 101 |
+
hidden_size = unet.config.block_out_channels[-1]
|
| 102 |
+
elif name.startswith("up_blocks"):
|
| 103 |
+
block_id = int(name[len("up_blocks.")])
|
| 104 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
| 105 |
+
elif name.startswith("down_blocks"):
|
| 106 |
+
block_id = int(name[len("down_blocks.")])
|
| 107 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
| 108 |
+
if cross_attention_dim is None:
|
| 109 |
+
attn_procs[name] = AttnProcessor()
|
| 110 |
+
else:
|
| 111 |
+
attn_procs[name] = IPAttnProcessor(
|
| 112 |
+
hidden_size=hidden_size,
|
| 113 |
+
cross_attention_dim=cross_attention_dim,
|
| 114 |
+
scale=1.0,
|
| 115 |
+
num_tokens=self.num_tokens,
|
| 116 |
+
).to(self.device, dtype=torch.float16)
|
| 117 |
+
unet.set_attn_processor(attn_procs)
|
| 118 |
+
if hasattr(self.pipe, "controlnet"):
|
| 119 |
+
if isinstance(self.pipe.controlnet, MultiControlNetModel):
|
| 120 |
+
for controlnet in self.pipe.controlnet.nets:
|
| 121 |
+
controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
|
| 122 |
+
else:
|
| 123 |
+
self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
|
| 124 |
+
|
| 125 |
+
def load_ip_adapter(self):
|
| 126 |
+
if self.ip_ckpt is not None:
|
| 127 |
+
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
|
| 128 |
+
state_dict = {"image_proj": {}, "ip_adapter": {}}
|
| 129 |
+
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
|
| 130 |
+
for key in f.keys():
|
| 131 |
+
if key.startswith("image_proj."):
|
| 132 |
+
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
|
| 133 |
+
elif key.startswith("ip_adapter."):
|
| 134 |
+
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
|
| 135 |
+
else:
|
| 136 |
+
state_dict = torch.load(self.ip_ckpt, map_location="cpu")
|
| 137 |
+
self.image_proj_model.load_state_dict(state_dict["image_proj"])
|
| 138 |
+
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
|
| 139 |
+
ip_layers.load_state_dict(state_dict["ip_adapter"])
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
# def load_ip_adapter(self):
|
| 143 |
+
# if self.ip_ckpt is not None:
|
| 144 |
+
# if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
|
| 145 |
+
# state_dict = {"image_proj_model": {}, "ip_adapter": {}}
|
| 146 |
+
# with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
|
| 147 |
+
# for key in f.keys():
|
| 148 |
+
# if key.startswith("image_proj_model."):
|
| 149 |
+
# state_dict["image_proj_model"][key.replace("image_proj_model.", "")] = f.get_tensor(key)
|
| 150 |
+
# elif key.startswith("ip_adapter."):
|
| 151 |
+
# state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
|
| 152 |
+
# else:
|
| 153 |
+
# state_dict = torch.load(self.ip_ckpt, map_location="cpu")
|
| 154 |
+
|
| 155 |
+
# tmp1 = {}
|
| 156 |
+
# for k,v in state_dict.items():
|
| 157 |
+
# if 'image_proj_model' in k:
|
| 158 |
+
# tmp1[k.replace('image_proj_model.','')] = v
|
| 159 |
+
# self.image_proj_model.load_state_dict(tmp1, strict=True)
|
| 160 |
+
# # ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
|
| 161 |
+
# tmp2 = {}
|
| 162 |
+
# for k,v in state_dict.ites():
|
| 163 |
+
# if 'adapter_mode' in k:
|
| 164 |
+
# tmp1[k] = v
|
| 165 |
+
|
| 166 |
+
# print(ip_layers.state_dict())
|
| 167 |
+
# ip_layers.load_state_dict(state_dict,strict=False)
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
@torch.inference_mode()
|
| 171 |
+
def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
|
| 172 |
+
if pil_image is not None:
|
| 173 |
+
if isinstance(pil_image, Image.Image):
|
| 174 |
+
pil_image = [pil_image]
|
| 175 |
+
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
| 176 |
+
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds
|
| 177 |
+
else:
|
| 178 |
+
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
|
| 179 |
+
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
| 180 |
+
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
|
| 181 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
| 182 |
+
|
| 183 |
+
def get_image_embeds_train(self, pil_image=None, clip_image_embeds=None):
|
| 184 |
+
if pil_image is not None:
|
| 185 |
+
if isinstance(pil_image, Image.Image):
|
| 186 |
+
pil_image = [pil_image]
|
| 187 |
+
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
| 188 |
+
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float32)).image_embeds
|
| 189 |
+
else:
|
| 190 |
+
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float32)
|
| 191 |
+
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
| 192 |
+
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
|
| 193 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
def set_scale(self, scale):
|
| 197 |
+
for attn_processor in self.pipe.unet.attn_processors.values():
|
| 198 |
+
if isinstance(attn_processor, IPAttnProcessor):
|
| 199 |
+
attn_processor.scale = scale
|
| 200 |
+
|
| 201 |
+
def generate(
|
| 202 |
+
self,
|
| 203 |
+
pil_image=None,
|
| 204 |
+
clip_image_embeds=None,
|
| 205 |
+
prompt=None,
|
| 206 |
+
negative_prompt=None,
|
| 207 |
+
scale=1.0,
|
| 208 |
+
num_samples=4,
|
| 209 |
+
seed=None,
|
| 210 |
+
guidance_scale=7.5,
|
| 211 |
+
num_inference_steps=50,
|
| 212 |
+
**kwargs,
|
| 213 |
+
):
|
| 214 |
+
self.set_scale(scale)
|
| 215 |
+
|
| 216 |
+
if pil_image is not None:
|
| 217 |
+
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
|
| 218 |
+
else:
|
| 219 |
+
num_prompts = clip_image_embeds.size(0)
|
| 220 |
+
|
| 221 |
+
if prompt is None:
|
| 222 |
+
prompt = "best quality, high quality"
|
| 223 |
+
if negative_prompt is None:
|
| 224 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
| 225 |
+
|
| 226 |
+
if not isinstance(prompt, List):
|
| 227 |
+
prompt = [prompt] * num_prompts
|
| 228 |
+
if not isinstance(negative_prompt, List):
|
| 229 |
+
negative_prompt = [negative_prompt] * num_prompts
|
| 230 |
+
|
| 231 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
|
| 232 |
+
pil_image=pil_image, clip_image_embeds=clip_image_embeds
|
| 233 |
+
)
|
| 234 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
| 235 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
| 236 |
+
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
| 237 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
| 238 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
| 239 |
+
|
| 240 |
+
with torch.inference_mode():
|
| 241 |
+
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
|
| 242 |
+
prompt,
|
| 243 |
+
device=self.device,
|
| 244 |
+
num_images_per_prompt=num_samples,
|
| 245 |
+
do_classifier_free_guidance=True,
|
| 246 |
+
negative_prompt=negative_prompt,
|
| 247 |
+
)
|
| 248 |
+
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
|
| 249 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
|
| 250 |
+
|
| 251 |
+
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
|
| 252 |
+
images = self.pipe(
|
| 253 |
+
prompt_embeds=prompt_embeds,
|
| 254 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 255 |
+
guidance_scale=guidance_scale,
|
| 256 |
+
num_inference_steps=num_inference_steps,
|
| 257 |
+
generator=generator,
|
| 258 |
+
**kwargs,
|
| 259 |
+
).images
|
| 260 |
+
|
| 261 |
+
return images
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
class IPAdapterXL(IPAdapter):
|
| 265 |
+
"""SDXL"""
|
| 266 |
+
|
| 267 |
+
def generate_test(
|
| 268 |
+
self,
|
| 269 |
+
pil_image,
|
| 270 |
+
prompt=None,
|
| 271 |
+
negative_prompt=None,
|
| 272 |
+
scale=1.0,
|
| 273 |
+
num_samples=4,
|
| 274 |
+
seed=None,
|
| 275 |
+
num_inference_steps=30,
|
| 276 |
+
**kwargs,
|
| 277 |
+
):
|
| 278 |
+
self.set_scale(scale)
|
| 279 |
+
|
| 280 |
+
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
|
| 281 |
+
|
| 282 |
+
if prompt is None:
|
| 283 |
+
prompt = "best quality, high quality"
|
| 284 |
+
if negative_prompt is None:
|
| 285 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
| 286 |
+
|
| 287 |
+
if not isinstance(prompt, List):
|
| 288 |
+
prompt = [prompt] * num_prompts
|
| 289 |
+
if not isinstance(negative_prompt, List):
|
| 290 |
+
negative_prompt = [negative_prompt] * num_prompts
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
with torch.inference_mode():
|
| 294 |
+
(
|
| 295 |
+
prompt_embeds,
|
| 296 |
+
negative_prompt_embeds,
|
| 297 |
+
pooled_prompt_embeds,
|
| 298 |
+
negative_pooled_prompt_embeds,
|
| 299 |
+
) = self.pipe.encode_prompt(
|
| 300 |
+
prompt,
|
| 301 |
+
num_images_per_prompt=num_samples,
|
| 302 |
+
do_classifier_free_guidance=True,
|
| 303 |
+
negative_prompt=negative_prompt,
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
|
| 307 |
+
images = self.pipe(
|
| 308 |
+
prompt_embeds=prompt_embeds,
|
| 309 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 310 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 311 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 312 |
+
num_inference_steps=num_inference_steps,
|
| 313 |
+
generator=generator,
|
| 314 |
+
**kwargs,
|
| 315 |
+
).images
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
# with torch.autocast("cuda"):
|
| 319 |
+
# images = self.pipe(
|
| 320 |
+
# prompt_embeds=prompt_embeds,
|
| 321 |
+
# negative_prompt_embeds=negative_prompt_embeds,
|
| 322 |
+
# pooled_prompt_embeds=pooled_prompt_embeds,
|
| 323 |
+
# negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 324 |
+
# num_inference_steps=num_inference_steps,
|
| 325 |
+
# generator=generator,
|
| 326 |
+
# **kwargs,
|
| 327 |
+
# ).images
|
| 328 |
+
|
| 329 |
+
return images
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
def generate(
|
| 333 |
+
self,
|
| 334 |
+
pil_image,
|
| 335 |
+
prompt=None,
|
| 336 |
+
negative_prompt=None,
|
| 337 |
+
scale=1.0,
|
| 338 |
+
num_samples=4,
|
| 339 |
+
seed=None,
|
| 340 |
+
num_inference_steps=30,
|
| 341 |
+
**kwargs,
|
| 342 |
+
):
|
| 343 |
+
self.set_scale(scale)
|
| 344 |
+
|
| 345 |
+
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
|
| 346 |
+
|
| 347 |
+
if prompt is None:
|
| 348 |
+
prompt = "best quality, high quality"
|
| 349 |
+
if negative_prompt is None:
|
| 350 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
| 351 |
+
|
| 352 |
+
if not isinstance(prompt, List):
|
| 353 |
+
prompt = [prompt] * num_prompts
|
| 354 |
+
if not isinstance(negative_prompt, List):
|
| 355 |
+
negative_prompt = [negative_prompt] * num_prompts
|
| 356 |
+
|
| 357 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
|
| 358 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
| 359 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
| 360 |
+
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
| 361 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
| 362 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
| 363 |
+
|
| 364 |
+
with torch.inference_mode():
|
| 365 |
+
(
|
| 366 |
+
prompt_embeds,
|
| 367 |
+
negative_prompt_embeds,
|
| 368 |
+
pooled_prompt_embeds,
|
| 369 |
+
negative_pooled_prompt_embeds,
|
| 370 |
+
) = self.pipe.encode_prompt(
|
| 371 |
+
prompt,
|
| 372 |
+
num_images_per_prompt=num_samples,
|
| 373 |
+
do_classifier_free_guidance=True,
|
| 374 |
+
negative_prompt=negative_prompt,
|
| 375 |
+
)
|
| 376 |
+
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
|
| 377 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
|
| 378 |
+
|
| 379 |
+
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
|
| 380 |
+
images = self.pipe(
|
| 381 |
+
prompt_embeds=prompt_embeds,
|
| 382 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 383 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 384 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 385 |
+
num_inference_steps=num_inference_steps,
|
| 386 |
+
generator=generator,
|
| 387 |
+
**kwargs,
|
| 388 |
+
).images
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
# with torch.autocast("cuda"):
|
| 392 |
+
# images = self.pipe(
|
| 393 |
+
# prompt_embeds=prompt_embeds,
|
| 394 |
+
# negative_prompt_embeds=negative_prompt_embeds,
|
| 395 |
+
# pooled_prompt_embeds=pooled_prompt_embeds,
|
| 396 |
+
# negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 397 |
+
# num_inference_steps=num_inference_steps,
|
| 398 |
+
# generator=generator,
|
| 399 |
+
# **kwargs,
|
| 400 |
+
# ).images
|
| 401 |
+
|
| 402 |
+
return images
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
class IPAdapterPlus(IPAdapter):
|
| 406 |
+
"""IP-Adapter with fine-grained features"""
|
| 407 |
+
|
| 408 |
+
def generate(
|
| 409 |
+
self,
|
| 410 |
+
pil_image=None,
|
| 411 |
+
clip_image_embeds=None,
|
| 412 |
+
prompt=None,
|
| 413 |
+
negative_prompt=None,
|
| 414 |
+
scale=1.0,
|
| 415 |
+
num_samples=4,
|
| 416 |
+
seed=None,
|
| 417 |
+
guidance_scale=7.5,
|
| 418 |
+
num_inference_steps=50,
|
| 419 |
+
**kwargs,
|
| 420 |
+
):
|
| 421 |
+
self.set_scale(scale)
|
| 422 |
+
|
| 423 |
+
if pil_image is not None:
|
| 424 |
+
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
|
| 425 |
+
else:
|
| 426 |
+
num_prompts = clip_image_embeds.size(0)
|
| 427 |
+
|
| 428 |
+
if prompt is None:
|
| 429 |
+
prompt = "best quality, high quality"
|
| 430 |
+
if negative_prompt is None:
|
| 431 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
| 432 |
+
|
| 433 |
+
if not isinstance(prompt, List):
|
| 434 |
+
prompt = [prompt] * num_prompts
|
| 435 |
+
if not isinstance(negative_prompt, List):
|
| 436 |
+
negative_prompt = [negative_prompt] * num_prompts
|
| 437 |
+
|
| 438 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
|
| 439 |
+
pil_image=pil_image, clip_image=clip_image_embeds
|
| 440 |
+
)
|
| 441 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
| 442 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
| 443 |
+
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
| 444 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
| 445 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
| 446 |
+
|
| 447 |
+
with torch.inference_mode():
|
| 448 |
+
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
|
| 449 |
+
prompt,
|
| 450 |
+
device=self.device,
|
| 451 |
+
num_images_per_prompt=num_samples,
|
| 452 |
+
do_classifier_free_guidance=True,
|
| 453 |
+
negative_prompt=negative_prompt,
|
| 454 |
+
)
|
| 455 |
+
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
|
| 456 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
|
| 457 |
+
|
| 458 |
+
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
|
| 459 |
+
images = self.pipe(
|
| 460 |
+
prompt_embeds=prompt_embeds,
|
| 461 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 462 |
+
guidance_scale=guidance_scale,
|
| 463 |
+
num_inference_steps=num_inference_steps,
|
| 464 |
+
generator=generator,
|
| 465 |
+
**kwargs,
|
| 466 |
+
).images
|
| 467 |
+
|
| 468 |
+
return images
|
| 469 |
+
|
| 470 |
+
|
| 471 |
+
def init_proj(self):
|
| 472 |
+
image_proj_model = Resampler(
|
| 473 |
+
dim=self.pipe.unet.config.cross_attention_dim,
|
| 474 |
+
depth=4,
|
| 475 |
+
dim_head=64,
|
| 476 |
+
heads=12,
|
| 477 |
+
num_queries=self.num_tokens,
|
| 478 |
+
embedding_dim=self.image_encoder.config.hidden_size,
|
| 479 |
+
output_dim=self.pipe.unet.config.cross_attention_dim,
|
| 480 |
+
ff_mult=4,
|
| 481 |
+
).to(self.device, dtype=torch.float16)
|
| 482 |
+
return image_proj_model
|
| 483 |
+
|
| 484 |
+
@torch.inference_mode()
|
| 485 |
+
def get_image_embeds(self, pil_image=None, clip_image=None, uncond= None):
|
| 486 |
+
if pil_image is not None:
|
| 487 |
+
if isinstance(pil_image, Image.Image):
|
| 488 |
+
pil_image = [pil_image]
|
| 489 |
+
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
| 490 |
+
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
| 491 |
+
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
| 492 |
+
else:
|
| 493 |
+
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
| 494 |
+
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
| 495 |
+
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
| 496 |
+
uncond_clip_image_embeds = self.image_encoder(
|
| 497 |
+
torch.zeros_like(clip_image), output_hidden_states=True
|
| 498 |
+
).hidden_states[-2]
|
| 499 |
+
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
|
| 500 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
| 501 |
+
|
| 502 |
+
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
class IPAdapterPlus_Lora(IPAdapter):
|
| 506 |
+
"""IP-Adapter with fine-grained features"""
|
| 507 |
+
|
| 508 |
+
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, rank=32):
|
| 509 |
+
self.rank = rank
|
| 510 |
+
super().__init__(sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens)
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def generate(
|
| 514 |
+
self,
|
| 515 |
+
pil_image=None,
|
| 516 |
+
clip_image_embeds=None,
|
| 517 |
+
prompt=None,
|
| 518 |
+
negative_prompt=None,
|
| 519 |
+
scale=1.0,
|
| 520 |
+
num_samples=4,
|
| 521 |
+
seed=None,
|
| 522 |
+
guidance_scale=7.5,
|
| 523 |
+
num_inference_steps=50,
|
| 524 |
+
**kwargs,
|
| 525 |
+
):
|
| 526 |
+
self.set_scale(scale)
|
| 527 |
+
|
| 528 |
+
if pil_image is not None:
|
| 529 |
+
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
|
| 530 |
+
else:
|
| 531 |
+
num_prompts = clip_image_embeds.size(0)
|
| 532 |
+
|
| 533 |
+
if prompt is None:
|
| 534 |
+
prompt = "best quality, high quality"
|
| 535 |
+
if negative_prompt is None:
|
| 536 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
| 537 |
+
|
| 538 |
+
if not isinstance(prompt, List):
|
| 539 |
+
prompt = [prompt] * num_prompts
|
| 540 |
+
if not isinstance(negative_prompt, List):
|
| 541 |
+
negative_prompt = [negative_prompt] * num_prompts
|
| 542 |
+
|
| 543 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
|
| 544 |
+
pil_image=pil_image, clip_image=clip_image_embeds
|
| 545 |
+
)
|
| 546 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
| 547 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
| 548 |
+
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
| 549 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
| 550 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
| 551 |
+
|
| 552 |
+
with torch.inference_mode():
|
| 553 |
+
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
|
| 554 |
+
prompt,
|
| 555 |
+
device=self.device,
|
| 556 |
+
num_images_per_prompt=num_samples,
|
| 557 |
+
do_classifier_free_guidance=True,
|
| 558 |
+
negative_prompt=negative_prompt,
|
| 559 |
+
)
|
| 560 |
+
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
|
| 561 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
|
| 562 |
+
|
| 563 |
+
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
|
| 564 |
+
images = self.pipe(
|
| 565 |
+
prompt_embeds=prompt_embeds,
|
| 566 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 567 |
+
guidance_scale=guidance_scale,
|
| 568 |
+
num_inference_steps=num_inference_steps,
|
| 569 |
+
generator=generator,
|
| 570 |
+
**kwargs,
|
| 571 |
+
).images
|
| 572 |
+
|
| 573 |
+
return images
|
| 574 |
+
|
| 575 |
+
|
| 576 |
+
def init_proj(self):
|
| 577 |
+
image_proj_model = Resampler(
|
| 578 |
+
dim=self.pipe.unet.config.cross_attention_dim,
|
| 579 |
+
depth=4,
|
| 580 |
+
dim_head=64,
|
| 581 |
+
heads=12,
|
| 582 |
+
num_queries=self.num_tokens,
|
| 583 |
+
embedding_dim=self.image_encoder.config.hidden_size,
|
| 584 |
+
output_dim=self.pipe.unet.config.cross_attention_dim,
|
| 585 |
+
ff_mult=4,
|
| 586 |
+
).to(self.device, dtype=torch.float16)
|
| 587 |
+
return image_proj_model
|
| 588 |
+
|
| 589 |
+
@torch.inference_mode()
|
| 590 |
+
def get_image_embeds(self, pil_image=None, clip_image=None, uncond= None):
|
| 591 |
+
if pil_image is not None:
|
| 592 |
+
if isinstance(pil_image, Image.Image):
|
| 593 |
+
pil_image = [pil_image]
|
| 594 |
+
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
| 595 |
+
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
| 596 |
+
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
| 597 |
+
else:
|
| 598 |
+
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
| 599 |
+
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
| 600 |
+
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
| 601 |
+
uncond_clip_image_embeds = self.image_encoder(
|
| 602 |
+
torch.zeros_like(clip_image), output_hidden_states=True
|
| 603 |
+
).hidden_states[-2]
|
| 604 |
+
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
|
| 605 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
| 606 |
+
|
| 607 |
+
def set_ip_adapter(self):
|
| 608 |
+
unet = self.pipe.unet
|
| 609 |
+
attn_procs = {}
|
| 610 |
+
unet_sd = unet.state_dict()
|
| 611 |
+
|
| 612 |
+
for attn_processor_name, attn_processor in unet.attn_processors.items():
|
| 613 |
+
# Parse the attention module.
|
| 614 |
+
cross_attention_dim = None if attn_processor_name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
| 615 |
+
if attn_processor_name.startswith("mid_block"):
|
| 616 |
+
hidden_size = unet.config.block_out_channels[-1]
|
| 617 |
+
elif attn_processor_name.startswith("up_blocks"):
|
| 618 |
+
block_id = int(attn_processor_name[len("up_blocks.")])
|
| 619 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
| 620 |
+
elif attn_processor_name.startswith("down_blocks"):
|
| 621 |
+
block_id = int(attn_processor_name[len("down_blocks.")])
|
| 622 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
| 623 |
+
if cross_attention_dim is None:
|
| 624 |
+
attn_procs[attn_processor_name] = AttnProcessor()
|
| 625 |
+
else:
|
| 626 |
+
layer_name = attn_processor_name.split(".processor")[0]
|
| 627 |
+
weights = {
|
| 628 |
+
"to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"],
|
| 629 |
+
"to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"],
|
| 630 |
+
}
|
| 631 |
+
attn_procs[attn_processor_name] = IPAttnProcessor2_0_Lora(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, num_tokens=self.num_tokens)
|
| 632 |
+
attn_procs[attn_processor_name].load_state_dict(weights,strict=False)
|
| 633 |
+
|
| 634 |
+
attn_module = unet
|
| 635 |
+
for n in attn_processor_name.split(".")[:-1]:
|
| 636 |
+
attn_module = getattr(attn_module, n)
|
| 637 |
+
|
| 638 |
+
attn_module.q_lora = LoRALinearLayer(in_features=attn_module.to_q.in_features, out_features=attn_module.to_q.out_features, rank=self.rank)
|
| 639 |
+
attn_module.k_lora = LoRALinearLayer(in_features=attn_module.to_k.in_features, out_features=attn_module.to_k.out_features, rank=self.rank)
|
| 640 |
+
attn_module.v_lora = LoRALinearLayer(in_features=attn_module.to_v.in_features, out_features=attn_module.to_v.out_features, rank=self.rank)
|
| 641 |
+
attn_module.out_lora = LoRALinearLayer(in_features=attn_module.to_out[0].in_features, out_features=attn_module.to_out[0].out_features, rank=self.rank)
|
| 642 |
+
|
| 643 |
+
unet.set_attn_processor(attn_procs)
|
| 644 |
+
if hasattr(self.pipe, "controlnet"):
|
| 645 |
+
if isinstance(self.pipe.controlnet, MultiControlNetModel):
|
| 646 |
+
for controlnet in self.pipe.controlnet.nets:
|
| 647 |
+
controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
|
| 648 |
+
else:
|
| 649 |
+
self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
|
| 650 |
+
|
| 651 |
+
|
| 652 |
+
|
| 653 |
+
class IPAdapterPlus_Lora_up(IPAdapter):
|
| 654 |
+
"""IP-Adapter with fine-grained features"""
|
| 655 |
+
|
| 656 |
+
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, rank=32):
|
| 657 |
+
self.rank = rank
|
| 658 |
+
super().__init__(sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens)
|
| 659 |
+
|
| 660 |
+
|
| 661 |
+
def generate(
|
| 662 |
+
self,
|
| 663 |
+
pil_image=None,
|
| 664 |
+
clip_image_embeds=None,
|
| 665 |
+
prompt=None,
|
| 666 |
+
negative_prompt=None,
|
| 667 |
+
scale=1.0,
|
| 668 |
+
num_samples=4,
|
| 669 |
+
seed=None,
|
| 670 |
+
guidance_scale=7.5,
|
| 671 |
+
num_inference_steps=50,
|
| 672 |
+
**kwargs,
|
| 673 |
+
):
|
| 674 |
+
self.set_scale(scale)
|
| 675 |
+
|
| 676 |
+
if pil_image is not None:
|
| 677 |
+
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
|
| 678 |
+
else:
|
| 679 |
+
num_prompts = clip_image_embeds.size(0)
|
| 680 |
+
|
| 681 |
+
if prompt is None:
|
| 682 |
+
prompt = "best quality, high quality"
|
| 683 |
+
if negative_prompt is None:
|
| 684 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
| 685 |
+
|
| 686 |
+
if not isinstance(prompt, List):
|
| 687 |
+
prompt = [prompt] * num_prompts
|
| 688 |
+
if not isinstance(negative_prompt, List):
|
| 689 |
+
negative_prompt = [negative_prompt] * num_prompts
|
| 690 |
+
|
| 691 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
|
| 692 |
+
pil_image=pil_image, clip_image=clip_image_embeds
|
| 693 |
+
)
|
| 694 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
| 695 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
| 696 |
+
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
| 697 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
| 698 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
| 699 |
+
|
| 700 |
+
with torch.inference_mode():
|
| 701 |
+
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
|
| 702 |
+
prompt,
|
| 703 |
+
device=self.device,
|
| 704 |
+
num_images_per_prompt=num_samples,
|
| 705 |
+
do_classifier_free_guidance=True,
|
| 706 |
+
negative_prompt=negative_prompt,
|
| 707 |
+
)
|
| 708 |
+
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
|
| 709 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
|
| 710 |
+
|
| 711 |
+
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
|
| 712 |
+
images = self.pipe(
|
| 713 |
+
prompt_embeds=prompt_embeds,
|
| 714 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 715 |
+
guidance_scale=guidance_scale,
|
| 716 |
+
num_inference_steps=num_inference_steps,
|
| 717 |
+
generator=generator,
|
| 718 |
+
**kwargs,
|
| 719 |
+
).images
|
| 720 |
+
|
| 721 |
+
return images
|
| 722 |
+
|
| 723 |
+
|
| 724 |
+
def init_proj(self):
|
| 725 |
+
image_proj_model = Resampler(
|
| 726 |
+
dim=self.pipe.unet.config.cross_attention_dim,
|
| 727 |
+
depth=4,
|
| 728 |
+
dim_head=64,
|
| 729 |
+
heads=12,
|
| 730 |
+
num_queries=self.num_tokens,
|
| 731 |
+
embedding_dim=self.image_encoder.config.hidden_size,
|
| 732 |
+
output_dim=self.pipe.unet.config.cross_attention_dim,
|
| 733 |
+
ff_mult=4,
|
| 734 |
+
).to(self.device, dtype=torch.float16)
|
| 735 |
+
return image_proj_model
|
| 736 |
+
|
| 737 |
+
@torch.inference_mode()
|
| 738 |
+
def get_image_embeds(self, pil_image=None, clip_image=None, uncond= None):
|
| 739 |
+
if pil_image is not None:
|
| 740 |
+
if isinstance(pil_image, Image.Image):
|
| 741 |
+
pil_image = [pil_image]
|
| 742 |
+
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
| 743 |
+
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
| 744 |
+
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
| 745 |
+
else:
|
| 746 |
+
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
| 747 |
+
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
| 748 |
+
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
| 749 |
+
uncond_clip_image_embeds = self.image_encoder(
|
| 750 |
+
torch.zeros_like(clip_image), output_hidden_states=True
|
| 751 |
+
).hidden_states[-2]
|
| 752 |
+
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
|
| 753 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
| 754 |
+
|
| 755 |
+
def set_ip_adapter(self):
|
| 756 |
+
unet = self.pipe.unet
|
| 757 |
+
attn_procs = {}
|
| 758 |
+
unet_sd = unet.state_dict()
|
| 759 |
+
|
| 760 |
+
for attn_processor_name, attn_processor in unet.attn_processors.items():
|
| 761 |
+
# Parse the attention module.
|
| 762 |
+
cross_attention_dim = None if attn_processor_name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
| 763 |
+
if attn_processor_name.startswith("mid_block"):
|
| 764 |
+
hidden_size = unet.config.block_out_channels[-1]
|
| 765 |
+
elif attn_processor_name.startswith("up_blocks"):
|
| 766 |
+
block_id = int(attn_processor_name[len("up_blocks.")])
|
| 767 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
| 768 |
+
elif attn_processor_name.startswith("down_blocks"):
|
| 769 |
+
block_id = int(attn_processor_name[len("down_blocks.")])
|
| 770 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
| 771 |
+
if cross_attention_dim is None:
|
| 772 |
+
attn_procs[attn_processor_name] = AttnProcessor()
|
| 773 |
+
else:
|
| 774 |
+
layer_name = attn_processor_name.split(".processor")[0]
|
| 775 |
+
weights = {
|
| 776 |
+
"to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"],
|
| 777 |
+
"to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"],
|
| 778 |
+
}
|
| 779 |
+
attn_procs[attn_processor_name] = IPAttnProcessor2_0_Lora(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, num_tokens=self.num_tokens)
|
| 780 |
+
attn_procs[attn_processor_name].load_state_dict(weights,strict=False)
|
| 781 |
+
|
| 782 |
+
attn_module = unet
|
| 783 |
+
for n in attn_processor_name.split(".")[:-1]:
|
| 784 |
+
attn_module = getattr(attn_module, n)
|
| 785 |
+
|
| 786 |
+
|
| 787 |
+
if "up_blocks" in attn_processor_name:
|
| 788 |
+
attn_module.q_lora = LoRALinearLayer(in_features=attn_module.to_q.in_features, out_features=attn_module.to_q.out_features, rank=self.rank)
|
| 789 |
+
attn_module.k_lora = LoRALinearLayer(in_features=attn_module.to_k.in_features, out_features=attn_module.to_k.out_features, rank=self.rank)
|
| 790 |
+
attn_module.v_lora = LoRALinearLayer(in_features=attn_module.to_v.in_features, out_features=attn_module.to_v.out_features, rank=self.rank)
|
| 791 |
+
attn_module.out_lora = LoRALinearLayer(in_features=attn_module.to_out[0].in_features, out_features=attn_module.to_out[0].out_features, rank=self.rank)
|
| 792 |
+
|
| 793 |
+
|
| 794 |
+
|
| 795 |
+
unet.set_attn_processor(attn_procs)
|
| 796 |
+
if hasattr(self.pipe, "controlnet"):
|
| 797 |
+
if isinstance(self.pipe.controlnet, MultiControlNetModel):
|
| 798 |
+
for controlnet in self.pipe.controlnet.nets:
|
| 799 |
+
controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
|
| 800 |
+
else:
|
| 801 |
+
self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
|
| 802 |
+
|
| 803 |
+
|
| 804 |
+
|
| 805 |
+
class IPAdapterFull(IPAdapterPlus):
|
| 806 |
+
"""IP-Adapter with full features"""
|
| 807 |
+
|
| 808 |
+
def init_proj(self):
|
| 809 |
+
image_proj_model = MLPProjModel(
|
| 810 |
+
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
| 811 |
+
clip_embeddings_dim=self.image_encoder.config.hidden_size,
|
| 812 |
+
).to(self.device, dtype=torch.float16)
|
| 813 |
+
return image_proj_model
|
| 814 |
+
|
| 815 |
+
|
| 816 |
+
class IPAdapterPlusXL(IPAdapter):
|
| 817 |
+
"""SDXL"""
|
| 818 |
+
|
| 819 |
+
def init_proj(self):
|
| 820 |
+
image_proj_model = Resampler(
|
| 821 |
+
dim=1280,
|
| 822 |
+
depth=4,
|
| 823 |
+
dim_head=64,
|
| 824 |
+
heads=20,
|
| 825 |
+
num_queries=self.num_tokens,
|
| 826 |
+
embedding_dim=self.image_encoder.config.hidden_size,
|
| 827 |
+
output_dim=self.pipe.unet.config.cross_attention_dim,
|
| 828 |
+
ff_mult=4,
|
| 829 |
+
).to(self.device, dtype=torch.float16)
|
| 830 |
+
return image_proj_model
|
| 831 |
+
|
| 832 |
+
@torch.inference_mode()
|
| 833 |
+
def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
|
| 834 |
+
if pil_image is not None:
|
| 835 |
+
if isinstance(pil_image, Image.Image):
|
| 836 |
+
pil_image = [pil_image]
|
| 837 |
+
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
| 838 |
+
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
| 839 |
+
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
| 840 |
+
else:
|
| 841 |
+
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
|
| 842 |
+
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
| 843 |
+
uncond_clip_image_embeds = self.image_encoder(
|
| 844 |
+
torch.zeros_like(clip_image), output_hidden_states=True
|
| 845 |
+
).hidden_states[-2]
|
| 846 |
+
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
|
| 847 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
| 848 |
+
|
| 849 |
+
def generate(
|
| 850 |
+
self,
|
| 851 |
+
pil_image,
|
| 852 |
+
prompt=None,
|
| 853 |
+
negative_prompt=None,
|
| 854 |
+
scale=1.0,
|
| 855 |
+
num_samples=4,
|
| 856 |
+
seed=None,
|
| 857 |
+
num_inference_steps=30,
|
| 858 |
+
**kwargs,
|
| 859 |
+
):
|
| 860 |
+
self.set_scale(scale)
|
| 861 |
+
|
| 862 |
+
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
|
| 863 |
+
|
| 864 |
+
if prompt is None:
|
| 865 |
+
prompt = "best quality, high quality"
|
| 866 |
+
if negative_prompt is None:
|
| 867 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
| 868 |
+
|
| 869 |
+
if not isinstance(prompt, List):
|
| 870 |
+
prompt = [prompt] * num_prompts
|
| 871 |
+
if not isinstance(negative_prompt, List):
|
| 872 |
+
negative_prompt = [negative_prompt] * num_prompts
|
| 873 |
+
|
| 874 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
|
| 875 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
| 876 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
| 877 |
+
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
| 878 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
| 879 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
| 880 |
+
|
| 881 |
+
with torch.inference_mode():
|
| 882 |
+
(
|
| 883 |
+
prompt_embeds,
|
| 884 |
+
negative_prompt_embeds,
|
| 885 |
+
pooled_prompt_embeds,
|
| 886 |
+
negative_pooled_prompt_embeds,
|
| 887 |
+
) = self.pipe.encode_prompt(
|
| 888 |
+
prompt,
|
| 889 |
+
num_images_per_prompt=num_samples,
|
| 890 |
+
do_classifier_free_guidance=True,
|
| 891 |
+
negative_prompt=negative_prompt,
|
| 892 |
+
)
|
| 893 |
+
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
|
| 894 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
|
| 895 |
+
|
| 896 |
+
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
|
| 897 |
+
images = self.pipe(
|
| 898 |
+
prompt_embeds=prompt_embeds,
|
| 899 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 900 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 901 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 902 |
+
num_inference_steps=num_inference_steps,
|
| 903 |
+
generator=generator,
|
| 904 |
+
**kwargs,
|
| 905 |
+
).images
|
| 906 |
+
|
| 907 |
+
return images
|
ip_adapter/resampler.py
ADDED
|
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
|
| 2 |
+
# and https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
|
| 3 |
+
|
| 4 |
+
import math
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
from einops import rearrange
|
| 9 |
+
from einops.layers.torch import Rearrange
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# FFN
|
| 13 |
+
def FeedForward(dim, mult=4):
|
| 14 |
+
inner_dim = int(dim * mult)
|
| 15 |
+
return nn.Sequential(
|
| 16 |
+
nn.LayerNorm(dim),
|
| 17 |
+
nn.Linear(dim, inner_dim, bias=False),
|
| 18 |
+
nn.GELU(),
|
| 19 |
+
nn.Linear(inner_dim, dim, bias=False),
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def reshape_tensor(x, heads):
|
| 24 |
+
bs, length, width = x.shape
|
| 25 |
+
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
| 26 |
+
x = x.view(bs, length, heads, -1)
|
| 27 |
+
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
| 28 |
+
x = x.transpose(1, 2)
|
| 29 |
+
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
| 30 |
+
x = x.reshape(bs, heads, length, -1)
|
| 31 |
+
return x
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class PerceiverAttention(nn.Module):
|
| 35 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
| 36 |
+
super().__init__()
|
| 37 |
+
self.scale = dim_head**-0.5
|
| 38 |
+
self.dim_head = dim_head
|
| 39 |
+
self.heads = heads
|
| 40 |
+
inner_dim = dim_head * heads
|
| 41 |
+
|
| 42 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 43 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 44 |
+
|
| 45 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
| 46 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
| 47 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
| 48 |
+
|
| 49 |
+
def forward(self, x, latents):
|
| 50 |
+
"""
|
| 51 |
+
Args:
|
| 52 |
+
x (torch.Tensor): image features
|
| 53 |
+
shape (b, n1, D)
|
| 54 |
+
latent (torch.Tensor): latent features
|
| 55 |
+
shape (b, n2, D)
|
| 56 |
+
"""
|
| 57 |
+
x = self.norm1(x)
|
| 58 |
+
latents = self.norm2(latents)
|
| 59 |
+
|
| 60 |
+
b, l, _ = latents.shape
|
| 61 |
+
|
| 62 |
+
q = self.to_q(latents)
|
| 63 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
| 64 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
| 65 |
+
|
| 66 |
+
q = reshape_tensor(q, self.heads)
|
| 67 |
+
k = reshape_tensor(k, self.heads)
|
| 68 |
+
v = reshape_tensor(v, self.heads)
|
| 69 |
+
|
| 70 |
+
# attention
|
| 71 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
| 72 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
| 73 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 74 |
+
out = weight @ v
|
| 75 |
+
|
| 76 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
| 77 |
+
|
| 78 |
+
return self.to_out(out)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class CrossAttention(nn.Module):
|
| 82 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
| 83 |
+
super().__init__()
|
| 84 |
+
self.scale = dim_head**-0.5
|
| 85 |
+
self.dim_head = dim_head
|
| 86 |
+
self.heads = heads
|
| 87 |
+
inner_dim = dim_head * heads
|
| 88 |
+
|
| 89 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 90 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 91 |
+
|
| 92 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
| 93 |
+
self.to_k = nn.Linear(dim, inner_dim, bias=False)
|
| 94 |
+
self.to_v = nn.Linear(dim, inner_dim, bias=False)
|
| 95 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def forward(self, x, x2):
|
| 99 |
+
"""
|
| 100 |
+
Args:
|
| 101 |
+
x (torch.Tensor): image features
|
| 102 |
+
shape (b, n1, D)
|
| 103 |
+
latent (torch.Tensor): latent features
|
| 104 |
+
shape (b, n2, D)
|
| 105 |
+
"""
|
| 106 |
+
x = self.norm1(x)
|
| 107 |
+
x2 = self.norm2(x2)
|
| 108 |
+
|
| 109 |
+
b, l, _ = x2.shape
|
| 110 |
+
|
| 111 |
+
q = self.to_q(x)
|
| 112 |
+
k = self.to_k(x2)
|
| 113 |
+
v = self.to_v(x2)
|
| 114 |
+
|
| 115 |
+
q = reshape_tensor(q, self.heads)
|
| 116 |
+
k = reshape_tensor(k, self.heads)
|
| 117 |
+
v = reshape_tensor(v, self.heads)
|
| 118 |
+
|
| 119 |
+
# attention
|
| 120 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
| 121 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
| 122 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 123 |
+
out = weight @ v
|
| 124 |
+
|
| 125 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
| 126 |
+
return self.to_out(out)
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
class Resampler(nn.Module):
|
| 130 |
+
def __init__(
|
| 131 |
+
self,
|
| 132 |
+
dim=1024,
|
| 133 |
+
depth=8,
|
| 134 |
+
dim_head=64,
|
| 135 |
+
heads=16,
|
| 136 |
+
num_queries=8,
|
| 137 |
+
embedding_dim=768,
|
| 138 |
+
output_dim=1024,
|
| 139 |
+
ff_mult=4,
|
| 140 |
+
max_seq_len: int = 257, # CLIP tokens + CLS token
|
| 141 |
+
apply_pos_emb: bool = False,
|
| 142 |
+
num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence
|
| 143 |
+
):
|
| 144 |
+
super().__init__()
|
| 145 |
+
|
| 146 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
| 147 |
+
|
| 148 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
| 149 |
+
|
| 150 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
| 151 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
| 152 |
+
|
| 153 |
+
self.layers = nn.ModuleList([])
|
| 154 |
+
for _ in range(depth):
|
| 155 |
+
self.layers.append(
|
| 156 |
+
nn.ModuleList(
|
| 157 |
+
[
|
| 158 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
| 159 |
+
FeedForward(dim=dim, mult=ff_mult),
|
| 160 |
+
]
|
| 161 |
+
)
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
def forward(self, x):
|
| 165 |
+
|
| 166 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
| 167 |
+
|
| 168 |
+
x = self.proj_in(x)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
for attn, ff in self.layers:
|
| 172 |
+
latents = attn(x, latents) + latents
|
| 173 |
+
latents = ff(latents) + latents
|
| 174 |
+
|
| 175 |
+
latents = self.proj_out(latents)
|
| 176 |
+
return self.norm_out(latents)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def masked_mean(t, *, dim, mask=None):
|
| 181 |
+
if mask is None:
|
| 182 |
+
return t.mean(dim=dim)
|
| 183 |
+
|
| 184 |
+
denom = mask.sum(dim=dim, keepdim=True)
|
| 185 |
+
mask = rearrange(mask, "b n -> b n 1")
|
| 186 |
+
masked_t = t.masked_fill(~mask, 0.0)
|
| 187 |
+
|
| 188 |
+
return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)
|
ip_adapter/test_resampler.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from resampler import Resampler
|
| 3 |
+
from transformers import CLIPVisionModel
|
| 4 |
+
|
| 5 |
+
BATCH_SIZE = 2
|
| 6 |
+
OUTPUT_DIM = 1280
|
| 7 |
+
NUM_QUERIES = 8
|
| 8 |
+
NUM_LATENTS_MEAN_POOLED = 4 # 0 for no mean pooling (previous behavior)
|
| 9 |
+
APPLY_POS_EMB = True # False for no positional embeddings (previous behavior)
|
| 10 |
+
IMAGE_ENCODER_NAME_OR_PATH = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def main():
|
| 14 |
+
image_encoder = CLIPVisionModel.from_pretrained(IMAGE_ENCODER_NAME_OR_PATH)
|
| 15 |
+
embedding_dim = image_encoder.config.hidden_size
|
| 16 |
+
print(f"image_encoder hidden size: ", embedding_dim)
|
| 17 |
+
|
| 18 |
+
image_proj_model = Resampler(
|
| 19 |
+
dim=1024,
|
| 20 |
+
depth=2,
|
| 21 |
+
dim_head=64,
|
| 22 |
+
heads=16,
|
| 23 |
+
num_queries=NUM_QUERIES,
|
| 24 |
+
embedding_dim=embedding_dim,
|
| 25 |
+
output_dim=OUTPUT_DIM,
|
| 26 |
+
ff_mult=2,
|
| 27 |
+
max_seq_len=257,
|
| 28 |
+
apply_pos_emb=APPLY_POS_EMB,
|
| 29 |
+
num_latents_mean_pooled=NUM_LATENTS_MEAN_POOLED,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
dummy_images = torch.randn(BATCH_SIZE, 3, 224, 224)
|
| 33 |
+
with torch.no_grad():
|
| 34 |
+
image_embeds = image_encoder(dummy_images, output_hidden_states=True).hidden_states[-2]
|
| 35 |
+
print("image_embds shape: ", image_embeds.shape)
|
| 36 |
+
|
| 37 |
+
with torch.no_grad():
|
| 38 |
+
ip_tokens = image_proj_model(image_embeds)
|
| 39 |
+
print("ip_tokens shape:", ip_tokens.shape)
|
| 40 |
+
assert ip_tokens.shape == (BATCH_SIZE, NUM_QUERIES + NUM_LATENTS_MEAN_POOLED, OUTPUT_DIM)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
if __name__ == "__main__":
|
| 44 |
+
main()
|
ip_adapter/utils.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.nn.functional as F
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def is_torch2_available():
|
| 5 |
+
return hasattr(F, "scaled_dot_product_attention")
|