File size: 3,119 Bytes
32cf7b5
 
 
 
4e32bcc
32cf7b5
c6c15e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d7e5ed
c6c15e2
 
 
 
 
 
 
 
 
 
8d7e5ed
 
c6c15e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
license: mit
title: Freeekyyy-chatBot
sdk: streamlit
sdk_version: 1.44.1
---
# πŸ€– Freeekyyy ChatBot

**Freeekyyy** is an *over-the-top*, emotional AI chatbot that FREAKS OUT (in Markdown!) on any topic you provide.  
It uses [LangChain](https://github.com/langchain-ai/langchain) + [OpenRouter](https://openrouter.ai) to generate expressive, explosive Markdown responses β€” perfect for dramatic, chaotic, and wildly informative outputs.

> πŸ”₯ Now powered with a **RAG (Retrieval-Augmented Generation) pipeline** to respond using your own PDFs and documents!

Check it out live πŸ‘‰ [MKCL/Freeekyyy-chatBot on Hugging Face 🀯](https://huggingface.co/spaces/MKCL/Freeekyyy-chatBot)

---

## 🧠 How It Works

- Uses `LangChain`'s `ChatPromptTemplate` to inject emotional few-shot prompts.
- Connects to **DeepSeek-R1-Zero** via [OpenRouter](https://openrouter.ai).
- Uses **vector search** (via `ChromaDB`) and **HuggingFace embeddings** for document retrieval (RAG).
- Outputs responses in beautiful **Markdown (.md)** format.
- Works as a **Streamlit app** or a **FastAPI backend**.

---

## πŸ” Retrieval-Augmented Generation (RAG)

The chatbot now includes a smart document processing pipeline:

1. **Document Ingestion**: Parses your uploaded PDF files.
2. **Chunking**: Splits them into overlapping text chunks.
3. **Embeddings**: Generates vector embeddings using `BAAI/bge-small-en`.
4. **Vector Store**: Stores chunks in `ChromaDB`.
5. **Context Injection**: Relevant chunks are inserted into the LLM prompt for context-aware responses!

---

## πŸ–₯️ Streamlit Integration

To display Markdown output in Streamlit:

```python
import streamlit as st

# Assuming `md_output` contains your model's response
st.markdown(md_output, unsafe_allow_html=True)
```

---

## πŸš€ Installation

### Option 1: Using `uv`
```bash
uv pip install -r requirements.txt
```

### Option 2: Using regular pip
```bash
pip install -r requirements.txt
```

---

## πŸ“¦ Requirements

```
langchain
langchain-community
langchain-openai
openai
chromadb
python-dotenv
huggingface_hub
sentence-transformers
streamlit
uvicorn
fastapi
```

---

## πŸ› οΈ Environment Variables

Create a `.env` file in the root directory:

```
OPENROUTER_API_KEY=your_openrouter_key_here
HUGGINGFACE_API_KEY=your_huggingface_key_here
```

---

## πŸ§ͺ Example Prompt Structure

```python
from langchain.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages([
    ("system", "You're an extremely emotional AI. Always freak out in Markdown."),
    ("user", "Topic: Volcanoes")
])
```

---

## πŸ”— RAG Query with Vector Search

```python
# Sample retrieval pipeline
relevant_chunks = db.similarity_search(query, k=4)
context = "\n\n".join([doc.page_content for doc in relevant_chunks])

final_prompt = f"""
You are an emotional assistant. Respond dramatically using Markdown.

Context:
{context}

Question:
{query}
"""
```

---

## πŸ§‘β€πŸ’» Want to Use as an API?

Run your backend like this:

```bash
uvicorn main:app --reload
```

---

## πŸ“Ž License

MIT β€” go freak out and teach some AI emotions! 🀯❀️πŸ”₯