Upload folder using huggingface_hub
Browse files- app/content.py +74 -0
- app/pages.py +56 -21
    	
        app/content.py
    ADDED
    
    | @@ -0,0 +1,74 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            asr_datsets = {'LibriSpeech-Test-Clean': 'aa', 
         | 
| 2 | 
            +
                            'LibriSpeech-Test-Other': 'bb', 
         | 
| 3 | 
            +
                            'Common-Voice-15-En-Test': 'cc', 
         | 
| 4 | 
            +
                            'Peoples-Speech-Test': 'dd', 
         | 
| 5 | 
            +
                            'GigaSpeech-Test': 'ee', 
         | 
| 6 | 
            +
                            'Earnings21-Test': 'ff', 
         | 
| 7 | 
            +
                            'Earnings22-Test': 'gg', 
         | 
| 8 | 
            +
                            'Tedlium3-Test': 'hh', 
         | 
| 9 | 
            +
                            'Tedlium3-Longform-Test': 'ii', 
         | 
| 10 | 
            +
                            'IMDA-Part1-ASR-Test': 'jj', 
         | 
| 11 | 
            +
                            'IMDA-Part2-ASR-Test': 'kk', 
         | 
| 12 | 
            +
                            'IMDA-Part3-ASR-Test': 'll', 
         | 
| 13 | 
            +
                            'IMDA-Part4-ASR-Test': 'mm', 
         | 
| 14 | 
            +
                            'IMDA-Part5-ASR-Test': 'nn', 
         | 
| 15 | 
            +
                            'IMDA-Part6-ASR-Test': 'oo'
         | 
| 16 | 
            +
                            }
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            sqa_datasets = {'CN-College-Listen-MCQ-Test': 'aa', 
         | 
| 19 | 
            +
                            'DREAM-TTS-MCQ-Test': 'bb', 
         | 
| 20 | 
            +
                            'SLUE-P2-SQA5-Test': 'cc', 
         | 
| 21 | 
            +
                            'Public-SG-Speech-QA-Test': 'dd', 
         | 
| 22 | 
            +
                            'Spoken-Squad-v1': 'ee'
         | 
| 23 | 
            +
                            }
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            si_datasets = {'OpenHermes-Audio-Test': 'aa', 
         | 
| 26 | 
            +
                           'ALPACA-Audio-Test': 'bb'
         | 
| 27 | 
            +
                           }
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            ac_datasets = {
         | 
| 30 | 
            +
                'WavCaps-Test': 'aa', 
         | 
| 31 | 
            +
                'AudioCaps-Test': 'bb'
         | 
| 32 | 
            +
            }
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            asqa_datasets = {
         | 
| 35 | 
            +
                'Clotho-AQA-Test': 'aa', 
         | 
| 36 | 
            +
                'WavCaps-QA-Test': 'bb', 
         | 
| 37 | 
            +
                'AudioCaps-QA-Test': 'cc'
         | 
| 38 | 
            +
            }
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            er_datasets = {
         | 
| 41 | 
            +
                'IEMOCAP-Emotion-Test': 'aa', 
         | 
| 42 | 
            +
                'MELD-Sentiment-Test': 'bb', 
         | 
| 43 | 
            +
                'MELD-Emotion-Test': 'cc'
         | 
| 44 | 
            +
            }
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            ar_datsets = {
         | 
| 47 | 
            +
                'VoxCeleb-Accent-Test': 'aa'
         | 
| 48 | 
            +
            }
         | 
| 49 | 
            +
             | 
| 50 | 
            +
            gr_datasets = {
         | 
| 51 | 
            +
                'VoxCeleb-Gender-Test': 'aa', 
         | 
| 52 | 
            +
                'IEMOCAP-Gender-Test': 'bb'
         | 
| 53 | 
            +
            }
         | 
| 54 | 
            +
             | 
| 55 | 
            +
            spt_datasets = {
         | 
| 56 | 
            +
                'Covost2-EN-ID-test': 'aa', 
         | 
| 57 | 
            +
                'Covost2-EN-ZH-test': 'bb',
         | 
| 58 | 
            +
                'Covost2-EN-TA-test': 'cc', 
         | 
| 59 | 
            +
                'Covost2-ID-EN-test': 'dd', 
         | 
| 60 | 
            +
                'Covost2-ZH-EN-test': 'ee', 
         | 
| 61 | 
            +
                'Covost2-TA-EN-test': 'ff'
         | 
| 62 | 
            +
            }
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            cnasr_datasets = {
         | 
| 65 | 
            +
                'Aishell-ASR-ZH-Test': 'aa'
         | 
| 66 | 
            +
            }
         | 
| 67 | 
            +
             | 
| 68 | 
            +
            metrics = {
         | 
| 69 | 
            +
                'wer': '11',
         | 
| 70 | 
            +
                'llama3_70b_judge_binary': '22',
         | 
| 71 | 
            +
                'llama3_70b_judge': '33',
         | 
| 72 | 
            +
                'meteor': '44',
         | 
| 73 | 
            +
                'bleu': '55'
         | 
| 74 | 
            +
            }
         | 
    	
        app/pages.py
    CHANGED
    
    | @@ -1,5 +1,29 @@ | |
| 1 | 
             
            import streamlit as st
         | 
| 2 | 
             
            from app.draw_diagram import *
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 3 |  | 
| 4 | 
             
            def dashboard():
         | 
| 5 |  | 
| @@ -107,9 +131,10 @@ def asr(): | |
| 107 | 
             
                #     sorted = st.selectbox('by', ['Ascending', 'Descending'])
         | 
| 108 |  | 
| 109 | 
             
                if filter_1:
         | 
|  | |
| 110 | 
             
                    draw('su', 'ASR', filter_1, 'wer')
         | 
| 111 | 
            -
                else:
         | 
| 112 | 
            -
             | 
| 113 |  | 
| 114 |  | 
| 115 | 
             
                ## examples
         | 
| @@ -133,11 +158,14 @@ def sqa(): | |
| 133 |  | 
| 134 | 
             
                if filter_1:
         | 
| 135 | 
             
                    if filter_1 in binary:
         | 
|  | |
| 136 | 
             
                        draw('su', 'SQA', filter_1, 'llama3_70b_judge_binary')
         | 
|  | |
| 137 | 
             
                    else:
         | 
|  | |
| 138 | 
             
                        draw('su', 'SQA', filter_1, 'llama3_70b_judge')
         | 
| 139 | 
            -
                else:
         | 
| 140 | 
            -
             | 
| 141 |  | 
| 142 | 
             
            def si():
         | 
| 143 | 
             
                st.title("Speech Question Answering")
         | 
| @@ -151,9 +179,10 @@ def si(): | |
| 151 | 
             
                    filter_1 = st.selectbox('Select Dataset', filters_levelone)
         | 
| 152 |  | 
| 153 | 
             
                if filter_1:
         | 
|  | |
| 154 | 
             
                    draw('su', 'SI', filter_1, 'llama3_70b_judge')
         | 
| 155 | 
            -
                else:
         | 
| 156 | 
            -
             | 
| 157 |  | 
| 158 | 
             
            def ac():
         | 
| 159 | 
             
                st.title("Audio Captioning")
         | 
| @@ -181,9 +210,10 @@ def ac(): | |
| 181 | 
             
                #     sorted = st.selectbox('by', ['Ascending', 'Descending'])
         | 
| 182 |  | 
| 183 | 
             
                if filter_1 or metric:
         | 
|  | |
| 184 | 
             
                    draw('asu', 'AC',filter_1, metric.lower().replace('-', '_'))
         | 
| 185 | 
            -
                else:
         | 
| 186 | 
            -
             | 
| 187 |  | 
| 188 | 
             
            def asqa():
         | 
| 189 | 
             
                st.title("Audio Scene Question Answering")
         | 
| @@ -198,9 +228,10 @@ def asqa(): | |
| 198 | 
             
                    filter_1 = st.selectbox('Select Dataset', filters_levelone)
         | 
| 199 |  | 
| 200 | 
             
                if filter_1:
         | 
|  | |
| 201 | 
             
                    draw('asu', 'AQA',filter_1, 'llama3_70b_judge')
         | 
| 202 | 
            -
                else:
         | 
| 203 | 
            -
             | 
| 204 |  | 
| 205 | 
             
            def er():
         | 
| 206 | 
             
                st.title("Emotion Recognition")
         | 
| @@ -208,7 +239,7 @@ def er(): | |
| 208 | 
             
                filters_levelone = ['IEMOCAP-Emotion-Test', 
         | 
| 209 | 
             
                                    'MELD-Sentiment-Test', 
         | 
| 210 | 
             
                                    'MELD-Emotion-Test']
         | 
| 211 | 
            -
                sort_leveltwo = []
         | 
| 212 |  | 
| 213 | 
             
                left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
         | 
| 214 |  | 
| @@ -231,9 +262,10 @@ def er(): | |
| 231 | 
             
                #     sorted = st.selectbox('by', ['Ascending', 'Descending'])
         | 
| 232 |  | 
| 233 | 
             
                if filter_1:
         | 
|  | |
| 234 | 
             
                    draw('vu', 'ER', filter_1, 'llama3_70b_judge_binary')
         | 
| 235 | 
            -
                else:
         | 
| 236 | 
            -
             | 
| 237 |  | 
| 238 | 
             
            def ar():
         | 
| 239 | 
             
                st.title("Accent Recognition")
         | 
| @@ -247,9 +279,9 @@ def ar(): | |
| 247 |  | 
| 248 |  | 
| 249 | 
             
                if filter_1:
         | 
|  | |
| 250 | 
             
                    draw('vu', 'AR', filter_1, 'llama3_70b_judge')
         | 
| 251 | 
            -
             | 
| 252 | 
            -
                    draw('vu', 'AR', 'VoxCeleb-Accent-Test', 'llama3_70b_judge')
         | 
| 253 |  | 
| 254 | 
             
            def gr():
         | 
| 255 | 
             
                st.title("Emotion Recognition")
         | 
| @@ -263,9 +295,10 @@ def gr(): | |
| 263 | 
             
                    filter_1 = st.selectbox('Select Dataset', filters_levelone)
         | 
| 264 |  | 
| 265 | 
             
                if filter_1:
         | 
|  | |
| 266 | 
             
                    draw('vu', 'GR', filter_1, 'llama3_70b_judge_binary')
         | 
| 267 | 
            -
                else:
         | 
| 268 | 
            -
             | 
| 269 |  | 
| 270 | 
             
            def spt():
         | 
| 271 | 
             
                st.title("Speech Translation")
         | 
| @@ -283,9 +316,10 @@ def spt(): | |
| 283 | 
             
                    filter_1 = st.selectbox('Select Dataset', filters_levelone)
         | 
| 284 |  | 
| 285 | 
             
                if filter_1:
         | 
|  | |
| 286 | 
             
                    draw('su', 'ST', filter_1, 'bleu')
         | 
| 287 | 
            -
                else:
         | 
| 288 | 
            -
             | 
| 289 |  | 
| 290 | 
             
            def cnasr():
         | 
| 291 | 
             
                st.title("Chinese Automatic Speech Recognition")
         | 
| @@ -298,6 +332,7 @@ def cnasr(): | |
| 298 | 
             
                    filter_1 = st.selectbox('Select Dataset', filters_levelone)
         | 
| 299 |  | 
| 300 | 
             
                if filter_1:
         | 
|  | |
| 301 | 
             
                    draw('su', 'CNASR', filter_1, 'wer')
         | 
| 302 | 
            -
                else:
         | 
| 303 | 
            -
             | 
|  | |
| 1 | 
             
            import streamlit as st
         | 
| 2 | 
             
            from app.draw_diagram import *
         | 
| 3 | 
            +
            from app.content import *
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            def dataset_contents(dataset, metrics):
         | 
| 6 | 
            +
                
         | 
| 7 | 
            +
                custom_css = """
         | 
| 8 | 
            +
                            <style>
         | 
| 9 | 
            +
                            .my-dataset-info {
         | 
| 10 | 
            +
                            # background-color: #F9EBEA;
         | 
| 11 | 
            +
                            # padding: 10px;
         | 
| 12 | 
            +
                            color: #626567;
         | 
| 13 | 
            +
                            font-style: italic;
         | 
| 14 | 
            +
                            font-size: 8px;
         | 
| 15 | 
            +
                            height: auto;
         | 
| 16 | 
            +
                            }
         | 
| 17 | 
            +
                            </style>
         | 
| 18 | 
            +
                            """
         | 
| 19 | 
            +
                st.markdown(custom_css, unsafe_allow_html=True)
         | 
| 20 | 
            +
                st.markdown(f"""<div class="my-dataset-info">
         | 
| 21 | 
            +
                                <p>DATASET INFORMATION: {dataset}</p>
         | 
| 22 | 
            +
                                </div>""", unsafe_allow_html=True)
         | 
| 23 | 
            +
                st.markdown(f"""<div class="my-dataset-info">
         | 
| 24 | 
            +
                                <p>METRIC INFORMATION: {metrics}</p>
         | 
| 25 | 
            +
                                </div>""", unsafe_allow_html=True)
         | 
| 26 | 
            +
             | 
| 27 |  | 
| 28 | 
             
            def dashboard():
         | 
| 29 |  | 
|  | |
| 131 | 
             
                #     sorted = st.selectbox('by', ['Ascending', 'Descending'])
         | 
| 132 |  | 
| 133 | 
             
                if filter_1:
         | 
| 134 | 
            +
                    dataset_contents(asr_datsets[filter_1], metrics['wer'])
         | 
| 135 | 
             
                    draw('su', 'ASR', filter_1, 'wer')
         | 
| 136 | 
            +
                # else:
         | 
| 137 | 
            +
                #     draw('su', 'ASR', 'LibriSpeech-Test-Clean', 'wer')
         | 
| 138 |  | 
| 139 |  | 
| 140 | 
             
                ## examples
         | 
|  | |
| 158 |  | 
| 159 | 
             
                if filter_1:
         | 
| 160 | 
             
                    if filter_1 in binary:
         | 
| 161 | 
            +
                        dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge_binary'])
         | 
| 162 | 
             
                        draw('su', 'SQA', filter_1, 'llama3_70b_judge_binary')
         | 
| 163 | 
            +
                    
         | 
| 164 | 
             
                    else:
         | 
| 165 | 
            +
                        dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge'])
         | 
| 166 | 
             
                        draw('su', 'SQA', filter_1, 'llama3_70b_judge')
         | 
| 167 | 
            +
                # else:
         | 
| 168 | 
            +
                #     draw('su', 'SQA', 'CN-College-Listen-Test', 'llama3_70b_judge_binary')
         | 
| 169 |  | 
| 170 | 
             
            def si():
         | 
| 171 | 
             
                st.title("Speech Question Answering")
         | 
|  | |
| 179 | 
             
                    filter_1 = st.selectbox('Select Dataset', filters_levelone)
         | 
| 180 |  | 
| 181 | 
             
                if filter_1:
         | 
| 182 | 
            +
                    dataset_contents(si_datasets[filter_1], metrics['llama3_70b_judge'])
         | 
| 183 | 
             
                    draw('su', 'SI', filter_1, 'llama3_70b_judge')
         | 
| 184 | 
            +
                # else:
         | 
| 185 | 
            +
                #     draw('su', 'SI', 'OpenHermes-Audio-Test', 'llama3_70b_judge')
         | 
| 186 |  | 
| 187 | 
             
            def ac():
         | 
| 188 | 
             
                st.title("Audio Captioning")
         | 
|  | |
| 210 | 
             
                #     sorted = st.selectbox('by', ['Ascending', 'Descending'])
         | 
| 211 |  | 
| 212 | 
             
                if filter_1 or metric:
         | 
| 213 | 
            +
                    dataset_contents(ac_datasets[filter_1], metrics[metric.lower().replace('-', '_')])
         | 
| 214 | 
             
                    draw('asu', 'AC',filter_1, metric.lower().replace('-', '_'))
         | 
| 215 | 
            +
                # else:
         | 
| 216 | 
            +
                #     draw('asu', 'AC', 'WavCaps-Test', 'llama3_70b_judge')
         | 
| 217 |  | 
| 218 | 
             
            def asqa():
         | 
| 219 | 
             
                st.title("Audio Scene Question Answering")
         | 
|  | |
| 228 | 
             
                    filter_1 = st.selectbox('Select Dataset', filters_levelone)
         | 
| 229 |  | 
| 230 | 
             
                if filter_1:
         | 
| 231 | 
            +
                    dataset_contents(asqa_datasets[filter_1], metrics['llama3_70b_judge'])
         | 
| 232 | 
             
                    draw('asu', 'AQA',filter_1, 'llama3_70b_judge')
         | 
| 233 | 
            +
                # else:
         | 
| 234 | 
            +
                #     draw('asu', 'AQA', 'Clotho-AQA-Test', 'llama3_70b_judge')
         | 
| 235 |  | 
| 236 | 
             
            def er():
         | 
| 237 | 
             
                st.title("Emotion Recognition")
         | 
|  | |
| 239 | 
             
                filters_levelone = ['IEMOCAP-Emotion-Test', 
         | 
| 240 | 
             
                                    'MELD-Sentiment-Test', 
         | 
| 241 | 
             
                                    'MELD-Emotion-Test']
         | 
| 242 | 
            +
                # sort_leveltwo = []
         | 
| 243 |  | 
| 244 | 
             
                left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
         | 
| 245 |  | 
|  | |
| 262 | 
             
                #     sorted = st.selectbox('by', ['Ascending', 'Descending'])
         | 
| 263 |  | 
| 264 | 
             
                if filter_1:
         | 
| 265 | 
            +
                    dataset_contents(er_datasets[filter_1], metrics['llama3_70b_judge_binary'])
         | 
| 266 | 
             
                    draw('vu', 'ER', filter_1, 'llama3_70b_judge_binary')
         | 
| 267 | 
            +
                # else:
         | 
| 268 | 
            +
                #     draw('vu', 'ER', 'IEMOCAP-Emotion-Test', 'llama3_70b_judge_binary')
         | 
| 269 |  | 
| 270 | 
             
            def ar():
         | 
| 271 | 
             
                st.title("Accent Recognition")
         | 
|  | |
| 279 |  | 
| 280 |  | 
| 281 | 
             
                if filter_1:
         | 
| 282 | 
            +
                    dataset_contents(ar_datsets[filter_1], metrics['llama3_70b_judge'])
         | 
| 283 | 
             
                    draw('vu', 'AR', filter_1, 'llama3_70b_judge')
         | 
| 284 | 
            +
             | 
|  | |
| 285 |  | 
| 286 | 
             
            def gr():
         | 
| 287 | 
             
                st.title("Emotion Recognition")
         | 
|  | |
| 295 | 
             
                    filter_1 = st.selectbox('Select Dataset', filters_levelone)
         | 
| 296 |  | 
| 297 | 
             
                if filter_1:
         | 
| 298 | 
            +
                    dataset_contents(gr_datasets[filter_1], metrics['llama3_70b_judge_binary'])
         | 
| 299 | 
             
                    draw('vu', 'GR', filter_1, 'llama3_70b_judge_binary')
         | 
| 300 | 
            +
                # else:
         | 
| 301 | 
            +
                #     draw('vu', 'GR', 'VoxCeleb1-Gender-Test', 'llama3_70b_judge_binary')
         | 
| 302 |  | 
| 303 | 
             
            def spt():
         | 
| 304 | 
             
                st.title("Speech Translation")
         | 
|  | |
| 316 | 
             
                    filter_1 = st.selectbox('Select Dataset', filters_levelone)
         | 
| 317 |  | 
| 318 | 
             
                if filter_1:
         | 
| 319 | 
            +
                    dataset_contents(spt_datasets[filter_1], metrics['bleu'])
         | 
| 320 | 
             
                    draw('su', 'ST', filter_1, 'bleu')
         | 
| 321 | 
            +
                # else:
         | 
| 322 | 
            +
                #     draw('su', 'ST', 'Covost2-EN-ID-test', 'bleu')
         | 
| 323 |  | 
| 324 | 
             
            def cnasr():
         | 
| 325 | 
             
                st.title("Chinese Automatic Speech Recognition")
         | 
|  | |
| 332 | 
             
                    filter_1 = st.selectbox('Select Dataset', filters_levelone)
         | 
| 333 |  | 
| 334 | 
             
                if filter_1:
         | 
| 335 | 
            +
                    dataset_contents(cnasr_datasets[filter_1], metrics['wer'])
         | 
| 336 | 
             
                    draw('su', 'CNASR', filter_1, 'wer')
         | 
| 337 | 
            +
                # else:
         | 
| 338 | 
            +
                #     draw('su', 'CNASR', 'Aishell-ASR-ZH-Test', 'wer')
         | 

