import spaces import torch import gradio as gr from modeling.dmm_pipeline import StableDiffusionDMMPipeline from huggingface_hub import snapshot_download ckpt_path = "ckpt" snapshot_download(repo_id="MCG-NJU/DMM", local_dir=ckpt_path) pipe = StableDiffusionDMMPipeline.from_pretrained( ckpt_path, torch_dtype=torch.float16, use_safetensors=True ) pipe.to("cuda") @spaces.GPU def generate(prompt: str, negative_prompt: str, model_id: int, seed: int = 1234, all: bool = True): if all: outputs = [] for i in range(pipe.unet.get_num_models()): output = pipe( prompt=prompt, negative_prompt=negative_prompt, width=512, height=512, num_inference_steps=25, guidance_scale=7, model_id=i, generator=torch.Generator().manual_seed(seed), ).images[0] outputs.append(output) return outputs else: output = pipe( prompt=prompt, negative_prompt=negative_prompt, width=512, height=512, num_inference_steps=25, guidance_scale=7, model_id=int(model_id), generator=torch.Generator().manual_seed(seed), ).images[0] return [output,] def main(): with gr.Blocks() as demo: gr.Markdown("# DMM") with gr.Row(): with gr.Column(): prompt = gr.Textbox("portrait photo of a girl, long golden hair, flowers, best quality", label="Prompt") negative_prompt = gr.Textbox("worst quality,low quality,normal quality,lowres,watermark,nsfw", label="Negative Prompt") seed = gr.Number(1234, label="Seed", precision=0) with gr.Column(): model_id = gr.Slider(label="Model Index", minimum=0, maximum=7, step=1) all_check = gr.Checkbox(label="All") btn = gr.Button("Submit", variant="primary") output = gr.Gallery(label="images") btn.click(generate, inputs=[prompt, negative_prompt, model_id, seed, all_check], outputs=[output]) demo.launch() if __name__ == "__main__": main()