Spaces:
Running
on
Zero
Running
on
Zero
songtianhui
commited on
Commit
·
439279b
1
Parent(s):
f063156
update
Browse files- README.md +5 -4
- app.py +77 -0
- modeling/dmm_pipeline.py +326 -0
- modeling/dmm_unet.py +0 -0
- requirements.txt +13 -0
README.md
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
---
|
2 |
title: DMM
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.25.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
short_description: Demo for paper DMM
|
11 |
---
|
12 |
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: DMM
|
3 |
+
emoji: 🖼
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.25.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
short_description: Demo for paper DMM
|
12 |
---
|
13 |
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from modeling.dmm_pipeline import StableDiffusionDMMPipeline
|
6 |
+
from huggingface_hub import snapshot_download
|
7 |
+
|
8 |
+
|
9 |
+
ckpt_path = "ckpt"
|
10 |
+
snapshot_download(repo_id="MCG-NJU/DMM", local_dir=ckpt_path)
|
11 |
+
|
12 |
+
pipe = StableDiffusionDMMPipeline.from_pretrained(
|
13 |
+
ckpt_path,
|
14 |
+
torch_dtype=torch.float16,
|
15 |
+
use_safetensors=True
|
16 |
+
)
|
17 |
+
pipe.to("cuda")
|
18 |
+
|
19 |
+
@spaces.GPU
|
20 |
+
def generate(prompt: str,
|
21 |
+
negative_prompt: str,
|
22 |
+
model_id: int,
|
23 |
+
seed: int = 1234,
|
24 |
+
all: bool = True):
|
25 |
+
if all:
|
26 |
+
outputs = []
|
27 |
+
for i in range(pipe.unet.get_num_models()):
|
28 |
+
output = pipe(
|
29 |
+
prompt=prompt,
|
30 |
+
negative_prompt=negative_prompt,
|
31 |
+
width=512,
|
32 |
+
height=512,
|
33 |
+
num_inference_steps=25,
|
34 |
+
guidance_scale=7,
|
35 |
+
model_id=i,
|
36 |
+
generator=torch.Generator().manual_seed(seed),
|
37 |
+
).images[0]
|
38 |
+
outputs.append(output)
|
39 |
+
return outputs
|
40 |
+
else:
|
41 |
+
output = pipe(
|
42 |
+
prompt=prompt,
|
43 |
+
negative_prompt=negative_prompt,
|
44 |
+
width=512,
|
45 |
+
height=512,
|
46 |
+
num_inference_steps=25,
|
47 |
+
guidance_scale=7,
|
48 |
+
model_id=int(model_id),
|
49 |
+
generator=torch.Generator().manual_seed(seed),
|
50 |
+
).images[0]
|
51 |
+
return [output,]
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
def main():
|
56 |
+
with gr.Blocks() as demo:
|
57 |
+
gr.Markdown("# DMM")
|
58 |
+
with gr.Row():
|
59 |
+
with gr.Column():
|
60 |
+
prompt = gr.Textbox("portrait photo of a girl, long golden hair, flowers, best quality", label="Prompt")
|
61 |
+
negative_prompt = gr.Textbox("worst quality,low quality,normal quality,lowres,watermark,nsfw", label="Negative Prompt")
|
62 |
+
seed = gr.Number(1234, label="Seed", precision=0)
|
63 |
+
with gr.Column():
|
64 |
+
model_id = gr.Slider(label="Model Index", minimum=0, maximum=7, step=1)
|
65 |
+
all_check = gr.Checkbox(label="All")
|
66 |
+
btn = gr.Button("Submit", variant="primary")
|
67 |
+
output = gr.Gallery(label="images")
|
68 |
+
|
69 |
+
btn.click(generate,
|
70 |
+
inputs=[prompt, negative_prompt, model_id, seed, all_check],
|
71 |
+
outputs=[output])
|
72 |
+
|
73 |
+
demo.launch()
|
74 |
+
|
75 |
+
|
76 |
+
if __name__ == "__main__":
|
77 |
+
main()
|
modeling/dmm_pipeline.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from diffusers.image_processor import PipelineImageInput
|
6 |
+
from diffusers.utils import (
|
7 |
+
deprecate,
|
8 |
+
logging,
|
9 |
+
replace_example_docstring,
|
10 |
+
)
|
11 |
+
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipeline, retrieve_timesteps, rescale_noise_cfg
|
12 |
+
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
|
13 |
+
|
14 |
+
|
15 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
16 |
+
|
17 |
+
EXAMPLE_DOC_STRING = """
|
18 |
+
Examples:
|
19 |
+
```py
|
20 |
+
>>> import torch
|
21 |
+
>>> from diffusers import StableDiffusionPipeline
|
22 |
+
|
23 |
+
>>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
|
24 |
+
>>> pipe = pipe.to("cuda")
|
25 |
+
|
26 |
+
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
27 |
+
>>> image = pipe(prompt).images[0]
|
28 |
+
```
|
29 |
+
"""
|
30 |
+
|
31 |
+
|
32 |
+
class StableDiffusionDMMPipeline(StableDiffusionPipeline):
|
33 |
+
|
34 |
+
@torch.no_grad()
|
35 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
36 |
+
def __call__(
|
37 |
+
self,
|
38 |
+
prompt: Union[str, List[str]] = None,
|
39 |
+
height: Optional[int] = None,
|
40 |
+
width: Optional[int] = None,
|
41 |
+
num_inference_steps: int = 50,
|
42 |
+
timesteps: List[int] = None,
|
43 |
+
guidance_scale: float = 7.5,
|
44 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
45 |
+
num_images_per_prompt: Optional[int] = 1,
|
46 |
+
eta: float = 0.0,
|
47 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
48 |
+
latents: Optional[torch.FloatTensor] = None,
|
49 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
50 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
51 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
52 |
+
output_type: Optional[str] = "pil",
|
53 |
+
return_dict: bool = True,
|
54 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
55 |
+
guidance_rescale: float = 0.0,
|
56 |
+
clip_skip: Optional[int] = None,
|
57 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
58 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
59 |
+
model_id: int = 0,
|
60 |
+
enable_model_id: bool = True,
|
61 |
+
**kwargs,
|
62 |
+
):
|
63 |
+
r"""
|
64 |
+
The call function to the pipeline for generation.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
prompt (`str` or `List[str]`, *optional*):
|
68 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
69 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
70 |
+
The height in pixels of the generated image.
|
71 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
72 |
+
The width in pixels of the generated image.
|
73 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
74 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
75 |
+
expense of slower inference.
|
76 |
+
timesteps (`List[int]`, *optional*):
|
77 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
78 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
79 |
+
passed will be used. Must be in descending order.
|
80 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
81 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
82 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
83 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
84 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
85 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
86 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
87 |
+
The number of images to generate per prompt.
|
88 |
+
eta (`float`, *optional*, defaults to 0.0):
|
89 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
90 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
91 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
92 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
93 |
+
generation deterministic.
|
94 |
+
latents (`torch.FloatTensor`, *optional*):
|
95 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
96 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
97 |
+
tensor is generated by sampling using the supplied random `generator`.
|
98 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
99 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
100 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
101 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
102 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
103 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
104 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
105 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
106 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
107 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
108 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
109 |
+
plain tuple.
|
110 |
+
cross_attention_kwargs (`dict`, *optional*):
|
111 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
112 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
113 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
114 |
+
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
115 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
|
116 |
+
using zero terminal SNR.
|
117 |
+
clip_skip (`int`, *optional*):
|
118 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
119 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
120 |
+
callback_on_step_end (`Callable`, *optional*):
|
121 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
122 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
123 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
124 |
+
`callback_on_step_end_tensor_inputs`.
|
125 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
126 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
127 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
128 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
129 |
+
|
130 |
+
Examples:
|
131 |
+
|
132 |
+
Returns:
|
133 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
134 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
135 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
136 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
137 |
+
"not-safe-for-work" (nsfw) content.
|
138 |
+
"""
|
139 |
+
|
140 |
+
callback = kwargs.pop("callback", None)
|
141 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
142 |
+
|
143 |
+
if callback is not None:
|
144 |
+
deprecate(
|
145 |
+
"callback",
|
146 |
+
"1.0.0",
|
147 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
148 |
+
)
|
149 |
+
if callback_steps is not None:
|
150 |
+
deprecate(
|
151 |
+
"callback_steps",
|
152 |
+
"1.0.0",
|
153 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
154 |
+
)
|
155 |
+
|
156 |
+
# 0. Default height and width to unet
|
157 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
158 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
159 |
+
# to deal with lora scaling and other possible forward hooks
|
160 |
+
|
161 |
+
# 1. Check inputs. Raise error if not correct
|
162 |
+
self.check_inputs(
|
163 |
+
prompt,
|
164 |
+
height,
|
165 |
+
width,
|
166 |
+
callback_steps,
|
167 |
+
negative_prompt,
|
168 |
+
prompt_embeds,
|
169 |
+
negative_prompt_embeds,
|
170 |
+
callback_on_step_end_tensor_inputs,
|
171 |
+
)
|
172 |
+
|
173 |
+
self._guidance_scale = guidance_scale
|
174 |
+
self._guidance_rescale = guidance_rescale
|
175 |
+
self._clip_skip = clip_skip
|
176 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
177 |
+
|
178 |
+
# 2. Define call parameters
|
179 |
+
if prompt is not None and isinstance(prompt, str):
|
180 |
+
batch_size = 1
|
181 |
+
elif prompt is not None and isinstance(prompt, list):
|
182 |
+
batch_size = len(prompt)
|
183 |
+
else:
|
184 |
+
batch_size = prompt_embeds.shape[0]
|
185 |
+
|
186 |
+
device = self._execution_device
|
187 |
+
|
188 |
+
# 3. Encode input prompt
|
189 |
+
lora_scale = (
|
190 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
191 |
+
)
|
192 |
+
|
193 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
194 |
+
prompt,
|
195 |
+
device,
|
196 |
+
num_images_per_prompt,
|
197 |
+
self.do_classifier_free_guidance,
|
198 |
+
negative_prompt,
|
199 |
+
prompt_embeds=prompt_embeds,
|
200 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
201 |
+
lora_scale=lora_scale,
|
202 |
+
clip_skip=self.clip_skip,
|
203 |
+
)
|
204 |
+
|
205 |
+
# For classifier free guidance, we need to do two forward passes.
|
206 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
207 |
+
# to avoid doing two forward passes
|
208 |
+
if self.do_classifier_free_guidance:
|
209 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
210 |
+
|
211 |
+
if ip_adapter_image is not None:
|
212 |
+
image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
|
213 |
+
if self.do_classifier_free_guidance:
|
214 |
+
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
215 |
+
|
216 |
+
# 4. Prepare timesteps
|
217 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
218 |
+
|
219 |
+
# 5. Prepare latent variables
|
220 |
+
num_channels_latents = self.unet.config.in_channels
|
221 |
+
latents = self.prepare_latents(
|
222 |
+
batch_size * num_images_per_prompt,
|
223 |
+
num_channels_latents,
|
224 |
+
height,
|
225 |
+
width,
|
226 |
+
prompt_embeds.dtype,
|
227 |
+
device,
|
228 |
+
generator,
|
229 |
+
latents,
|
230 |
+
)
|
231 |
+
|
232 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
233 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
234 |
+
|
235 |
+
# 6.1 Add image embeds for IP-Adapter
|
236 |
+
ipadapter_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
|
237 |
+
|
238 |
+
# 6.2 Optionally get Guidance Scale Embedding
|
239 |
+
timestep_cond = None
|
240 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
241 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
242 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
243 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
244 |
+
).to(device=device, dtype=latents.dtype)
|
245 |
+
|
246 |
+
# 6.3 Add model_ids
|
247 |
+
assert 0 <= model_id and model_id < self.unet.model_embedding.num_embeddings
|
248 |
+
model_ids = torch.LongTensor([model_id] * len(latents) * (2 if self.do_classifier_free_guidance else 1)).to(device) # (b,)
|
249 |
+
added_cond_kwargs = {"model_ids": model_ids}
|
250 |
+
if ipadapter_cond_kwargs is not None:
|
251 |
+
added_cond_kwargs.update(ipadapter_cond_kwargs)
|
252 |
+
# print(added_cond_kwargs)
|
253 |
+
|
254 |
+
# 7. Denoising loop
|
255 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
256 |
+
self._num_timesteps = len(timesteps)
|
257 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
258 |
+
for i, t in enumerate(timesteps):
|
259 |
+
# expand the latents if we are doing classifier free guidance
|
260 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
261 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
262 |
+
|
263 |
+
# predict the noise residual
|
264 |
+
noise_pred = self.unet(
|
265 |
+
latent_model_input,
|
266 |
+
t,
|
267 |
+
encoder_hidden_states=prompt_embeds,
|
268 |
+
timestep_cond=timestep_cond,
|
269 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
270 |
+
added_cond_kwargs=added_cond_kwargs,
|
271 |
+
return_dict=False,
|
272 |
+
enable_model_id=enable_model_id,
|
273 |
+
)[0]
|
274 |
+
|
275 |
+
# perform guidance
|
276 |
+
if self.do_classifier_free_guidance:
|
277 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
278 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
279 |
+
|
280 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
281 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
282 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
283 |
+
|
284 |
+
# compute the previous noisy sample x_t -> x_t-1
|
285 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
286 |
+
|
287 |
+
if callback_on_step_end is not None:
|
288 |
+
callback_kwargs = {}
|
289 |
+
for k in callback_on_step_end_tensor_inputs:
|
290 |
+
callback_kwargs[k] = locals()[k]
|
291 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
292 |
+
|
293 |
+
latents = callback_outputs.pop("latents", latents)
|
294 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
295 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
296 |
+
|
297 |
+
# call the callback, if provided
|
298 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
299 |
+
progress_bar.update()
|
300 |
+
if callback is not None and i % callback_steps == 0:
|
301 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
302 |
+
callback(step_idx, t, latents)
|
303 |
+
|
304 |
+
if not output_type == "latent":
|
305 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
|
306 |
+
0
|
307 |
+
]
|
308 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
309 |
+
else:
|
310 |
+
image = latents
|
311 |
+
has_nsfw_concept = None
|
312 |
+
|
313 |
+
if has_nsfw_concept is None:
|
314 |
+
do_denormalize = [True] * image.shape[0]
|
315 |
+
else:
|
316 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
317 |
+
|
318 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
319 |
+
|
320 |
+
# Offload all models
|
321 |
+
self.maybe_free_model_hooks()
|
322 |
+
|
323 |
+
if not return_dict:
|
324 |
+
return (image, has_nsfw_concept)
|
325 |
+
|
326 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
modeling/dmm_unet.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
fsspec
|
3 |
+
Pillow==9.4.0
|
4 |
+
torch==2.2
|
5 |
+
accelerate
|
6 |
+
transformers
|
7 |
+
diffusers
|
8 |
+
Jinja2==3.1.4
|
9 |
+
huggingface-hub
|
10 |
+
retrying
|
11 |
+
setuptools>=40.8.0
|
12 |
+
open_clip_torch==2.29.0
|
13 |
+
gradio
|