Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from src.diffusion.base.scheduling import * | |
| from src.diffusion.base.sampling import * | |
| from typing import Callable | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| class DDIMSampler(BaseSampler): | |
| def __init__( | |
| self, | |
| train_num_steps=1000, | |
| *args, | |
| **kwargs | |
| ): | |
| super().__init__(*args, **kwargs) | |
| self.train_num_steps = train_num_steps | |
| assert self.scheduler is not None | |
| def _impl_sampling(self, net, noise, condition, uncondition): | |
| batch_size = noise.shape[0] | |
| steps = torch.linspace(0.0, self.train_num_steps-1, self.num_steps, device=noise.device) | |
| steps = torch.flip(steps, dims=[0]) | |
| cfg_condition = torch.cat([uncondition, condition], dim=0) | |
| x = x0 = noise | |
| for i, (t_cur, t_next) in enumerate(zip(steps[:-1], steps[1:])): | |
| t_cur = t_cur.repeat(batch_size) | |
| t_next = t_next.repeat(batch_size) | |
| sigma = self.scheduler.sigma(t_cur) | |
| alpha = self.scheduler.alpha(t_cur) | |
| sigma_next = self.scheduler.sigma(t_next) | |
| alpha_next = self.scheduler.alpha(t_next) | |
| cfg_x = torch.cat([x, x], dim=0) | |
| t = t_cur.repeat(2) | |
| out = net(cfg_x, t, cfg_condition) | |
| out = self.guidance_fn(out, self.guidance) | |
| x0 = (x - sigma * out) / alpha | |
| x = alpha_next * x0 + sigma_next * out | |
| return x0 |