Spaces:
Sleeping
Sleeping
:pencil: [Doc] Readme: New models, api key and no-stream mode, and models to support
Browse files
README.md
CHANGED
|
@@ -14,15 +14,21 @@ Huggingface LLM Inference API in OpenAI message format.
|
|
| 14 |
|
| 15 |
✅ Implemented:
|
| 16 |
|
| 17 |
-
-
|
| 18 |
-
- `mixtral-8x7b`, `mistral-7b`
|
|
|
|
| 19 |
- Support OpenAI API format
|
| 20 |
- Can use api endpoint via official `openai-python` package
|
| 21 |
-
-
|
|
|
|
| 22 |
- Docker deployment
|
| 23 |
|
| 24 |
🔨 In progress:
|
| 25 |
-
- [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
## Run API service
|
| 28 |
|
|
@@ -70,7 +76,8 @@ from openai import OpenAI
|
|
| 70 |
|
| 71 |
# If runnning this service with proxy, you might need to unset `http(s)_proxy`.
|
| 72 |
base_url = "http://127.0.0.1:23333"
|
| 73 |
-
|
|
|
|
| 74 |
|
| 75 |
client = OpenAI(base_url=base_url, api_key=api_key)
|
| 76 |
response = client.chat.completions.create(
|
|
|
|
| 14 |
|
| 15 |
✅ Implemented:
|
| 16 |
|
| 17 |
+
- Available Models:
|
| 18 |
+
- `mixtral-8x7b`, `mistral-7b`, `openchat-3.5`
|
| 19 |
+
- Adaptive prompt templates for different models
|
| 20 |
- Support OpenAI API format
|
| 21 |
- Can use api endpoint via official `openai-python` package
|
| 22 |
+
- Support both stream and no-stream response
|
| 23 |
+
- Support API Key via both HTTP auth header and env varible (https://github.com/Hansimov/hf-llm-api/issues/4)
|
| 24 |
- Docker deployment
|
| 25 |
|
| 26 |
🔨 In progress:
|
| 27 |
+
- [ ] Support more models (https://github.com/Hansimov/hf-llm-api/issues/5)
|
| 28 |
+
- [ ] meta-llama/Llama-2-70b-chat-hf
|
| 29 |
+
- [ ] codellama/CodeLlama-34b-Instruct-hf
|
| 30 |
+
- [ ] tiiuae/falcon-180B-chat
|
| 31 |
+
|
| 32 |
|
| 33 |
## Run API service
|
| 34 |
|
|
|
|
| 76 |
|
| 77 |
# If runnning this service with proxy, you might need to unset `http(s)_proxy`.
|
| 78 |
base_url = "http://127.0.0.1:23333"
|
| 79 |
+
# Your own HF_TOKEN
|
| 80 |
+
api_key = "hf_xxxxxxxxxxxxxxxx"
|
| 81 |
|
| 82 |
client = OpenAI(base_url=base_url, api_key=api_key)
|
| 83 |
response = client.chat.completions.create(
|