Update app.py
Browse files
app.py
CHANGED
|
@@ -80,6 +80,38 @@ def get_word_classifications(text):
|
|
| 80 |
word_tags.append(str(current_tag))
|
| 81 |
return word_tags
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
# def get_word_classifications(text):
|
| 84 |
# text = " ".join(text.split(" ")[:2048])
|
| 85 |
# inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
|
|
|
| 80 |
word_tags.append(str(current_tag))
|
| 81 |
return word_tags
|
| 82 |
|
| 83 |
+
def get_word_probabilities(text):
|
| 84 |
+
text = " ".join(text.split(" ")[:2048])
|
| 85 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 86 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 87 |
+
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
|
| 88 |
+
with torch.no_grad():
|
| 89 |
+
tags, emission = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])
|
| 90 |
+
probs = torch.softmax(emission, dim=-1)[0, :, 1].cpu().numpy()
|
| 91 |
+
|
| 92 |
+
word_probs = []
|
| 93 |
+
current_word = ""
|
| 94 |
+
current_probs = []
|
| 95 |
+
|
| 96 |
+
for token, prob in zip(tokens, probs):
|
| 97 |
+
if token in ["<s>", "</s>"]:
|
| 98 |
+
continue
|
| 99 |
+
if token.startswith("▁"):
|
| 100 |
+
if current_word and current_probs:
|
| 101 |
+
word_probs.append(sum(current_probs) / len(current_probs))
|
| 102 |
+
current_word = token[1:] if token != "▁" else ""
|
| 103 |
+
current_probs = [prob]
|
| 104 |
+
else:
|
| 105 |
+
current_word += token
|
| 106 |
+
current_probs.append(prob)
|
| 107 |
+
|
| 108 |
+
if current_word and current_probs:
|
| 109 |
+
word_probs.append(sum(current_probs) / len(current_probs))
|
| 110 |
+
|
| 111 |
+
return word_probs
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
|
| 115 |
# def get_word_classifications(text):
|
| 116 |
# text = " ".join(text.split(" ")[:2048])
|
| 117 |
# inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|