Spaces:
Runtime error
Runtime error
| # Copyright 2023 CVSSP, ByteDance and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from dataclasses import dataclass | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from transformers import ( | |
| ClapFeatureExtractor, | |
| ClapModel, | |
| GPT2Model, | |
| RobertaTokenizer, | |
| RobertaTokenizerFast, | |
| SpeechT5HifiGan, | |
| T5EncoderModel, | |
| T5Tokenizer, | |
| T5TokenizerFast, | |
| ) | |
| from diffusers.models import AutoencoderKL | |
| from diffusers.schedulers import KarrasDiffusionSchedulers | |
| from diffusers.utils import ( | |
| is_accelerate_available, | |
| is_accelerate_version, | |
| is_librosa_available, | |
| logging, | |
| replace_example_docstring, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.pipeline_utils import DiffusionPipeline | |
| from .modeling_audioldm2 import AudioLDM2ProjectionModel, AudioLDM2UNet2DConditionModel | |
| from diffusers.utils import BaseOutput | |
| if is_librosa_available(): | |
| import librosa | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import scipy | |
| >>> import torch | |
| >>> from diffusers import AudioLDM2Pipeline | |
| >>> repo_id = "cvssp/audioldm2" | |
| >>> pipe = AudioLDM2Pipeline.from_pretrained(repo_id, torch_dtype=torch.float16) | |
| >>> pipe = pipe.to("cuda") | |
| >>> # define the prompts | |
| >>> prompt = "The sound of a hammer hitting a wooden surface." | |
| >>> negative_prompt = "Low quality." | |
| >>> # set the seed for generator | |
| >>> generator = torch.Generator("cuda").manual_seed(0) | |
| >>> # run the generation | |
| >>> audio = pipe( | |
| ... prompt, | |
| ... negative_prompt=negative_prompt, | |
| ... num_inference_steps=200, | |
| ... audio_length_in_s=10.0, | |
| ... num_waveforms_per_prompt=3, | |
| ... generator=generator, | |
| ... ).audios | |
| >>> # save the best audio sample (index 0) as a .wav file | |
| >>> scipy.io.wavfile.write("techno.wav", rate=16000, data=audio[0]) | |
| ``` | |
| """ | |
| class AudioPipelineOutput(BaseOutput): | |
| """ | |
| Output class for audio pipelines. | |
| Args: | |
| audios (`np.ndarray`) | |
| List of denoised audio samples of a NumPy array of shape `(batch_size, num_channels, sample_rate)`. | |
| """ | |
| audios: np.ndarray | |
| def prepare_inputs_for_generation( | |
| inputs_embeds, | |
| attention_mask=None, | |
| past_key_values=None, | |
| **kwargs, | |
| ): | |
| if past_key_values is not None: | |
| # only last token for inputs_embeds if past is defined in kwargs | |
| inputs_embeds = inputs_embeds[:, -1:] | |
| return { | |
| "inputs_embeds": inputs_embeds, | |
| "attention_mask": attention_mask, | |
| "past_key_values": past_key_values, | |
| "use_cache": kwargs.get("use_cache"), | |
| } | |
| class AudioLDM2Pipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline for text-to-audio generation using AudioLDM2. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
| implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | |
| text_encoder ([`~transformers.ClapModel`]): | |
| First frozen text-encoder. AudioLDM2 uses the joint audio-text embedding model | |
| [CLAP](https://huggingface.co/docs/transformers/model_doc/clap#transformers.CLAPTextModelWithProjection), | |
| specifically the [laion/clap-htsat-unfused](https://huggingface.co/laion/clap-htsat-unfused) variant. The | |
| text branch is used to encode the text prompt to a prompt embedding. The full audio-text model is used to | |
| rank generated waveforms against the text prompt by computing similarity scores. | |
| text_encoder_2 ([`~transformers.T5EncoderModel`]): | |
| Second frozen text-encoder. AudioLDM2 uses the encoder of | |
| [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the | |
| [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) variant. | |
| projection_model ([`AudioLDM2ProjectionModel`]): | |
| A trained model used to linearly project the hidden-states from the first and second text encoder models | |
| and insert learned SOS and EOS token embeddings. The projected hidden-states from the two text encoders are | |
| concatenated to give the input to the language model. | |
| language_model ([`~transformers.GPT2Model`]): | |
| An auto-regressive language model used to generate a sequence of hidden-states conditioned on the projected | |
| outputs from the two text encoders. | |
| tokenizer ([`~transformers.RobertaTokenizer`]): | |
| Tokenizer to tokenize text for the first frozen text-encoder. | |
| tokenizer_2 ([`~transformers.T5Tokenizer`]): | |
| Tokenizer to tokenize text for the second frozen text-encoder. | |
| feature_extractor ([`~transformers.ClapFeatureExtractor`]): | |
| Feature extractor to pre-process generated audio waveforms to log-mel spectrograms for automatic scoring. | |
| unet ([`UNet2DConditionModel`]): | |
| A `UNet2DConditionModel` to denoise the encoded audio latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| vocoder ([`~transformers.SpeechT5HifiGan`]): | |
| Vocoder of class `SpeechT5HifiGan` to convert the mel-spectrogram latents to the final audio waveform. | |
| """ | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: ClapModel, | |
| text_encoder_2: T5EncoderModel, | |
| projection_model: AudioLDM2ProjectionModel, | |
| language_model: GPT2Model, | |
| tokenizer: Union[RobertaTokenizer, RobertaTokenizerFast], | |
| tokenizer_2: Union[T5Tokenizer, T5TokenizerFast], | |
| feature_extractor: ClapFeatureExtractor, | |
| unet: AudioLDM2UNet2DConditionModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| vocoder: SpeechT5HifiGan, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| projection_model=projection_model, | |
| language_model=language_model, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| feature_extractor=feature_extractor, | |
| unet=unet, | |
| scheduler=scheduler, | |
| vocoder=vocoder, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing | |
| def enable_vae_slicing(self): | |
| r""" | |
| Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
| compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
| """ | |
| self.vae.enable_slicing() | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing | |
| def disable_vae_slicing(self): | |
| r""" | |
| Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_slicing() | |
| def enable_model_cpu_offload(self, gpu_id=0): | |
| r""" | |
| Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
| to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
| method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
| `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
| """ | |
| if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | |
| from accelerate import cpu_offload_with_hook | |
| else: | |
| raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| if self.device.type != "cpu": | |
| self.to("cpu", silence_dtype_warnings=True) | |
| torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
| model_sequence = [ | |
| self.text_encoder.text_model, | |
| self.text_encoder.text_projection, | |
| self.text_encoder_2, | |
| self.projection_model, | |
| self.language_model, | |
| self.unet, | |
| self.vae, | |
| self.vocoder, | |
| self.text_encoder, | |
| ] | |
| hook = None | |
| for cpu_offloaded_model in model_sequence: | |
| _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) | |
| # We'll offload the last model manually. | |
| self.final_offload_hook = hook | |
| def generate_language_model( | |
| self, | |
| inputs_embeds: torch.Tensor = None, | |
| max_new_tokens: int = 8, | |
| **model_kwargs, | |
| ): | |
| """ | |
| Generates a sequence of hidden-states from the language model, conditioned on the embedding inputs. | |
| Parameters: | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
| The sequence used as a prompt for the generation. | |
| max_new_tokens (`int`): | |
| Number of new tokens to generate. | |
| model_kwargs (`Dict[str, Any]`, *optional*): | |
| Ad hoc parametrization of additional model-specific kwargs that will be forwarded to the `forward` | |
| function of the model. | |
| Return: | |
| `inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
| The sequence of generated hidden-states. | |
| """ | |
| max_new_tokens = max_new_tokens if max_new_tokens is not None else self.language_model.config.max_new_tokens | |
| for _ in range(max_new_tokens): | |
| # prepare model inputs | |
| model_inputs = prepare_inputs_for_generation(inputs_embeds, **model_kwargs) | |
| # forward pass to get next hidden states | |
| output = self.language_model(**model_inputs, return_dict=True) | |
| next_hidden_states = output.last_hidden_state | |
| # Update the model input | |
| inputs_embeds = torch.cat([inputs_embeds, next_hidden_states[:, -1:, :]], dim=1) | |
| # Update generated hidden states, model inputs, and length for next step | |
| model_kwargs = self.language_model._update_model_kwargs_for_generation(output, model_kwargs) | |
| return inputs_embeds[:, -max_new_tokens:, :] | |
| def encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_waveforms_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| generated_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_generated_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| negative_attention_mask: Optional[torch.LongTensor] = None, | |
| max_new_tokens: Optional[int] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| device (`torch.device`): | |
| torch device | |
| num_waveforms_per_prompt (`int`): | |
| number of waveforms that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the audio generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-computed text embeddings from the Flan T5 model. Can be used to easily tweak text inputs, *e.g.* | |
| prompt weighting. If not provided, text embeddings will be computed from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-computed negative text embeddings from the Flan T5 model. Can be used to easily tweak text inputs, | |
| *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from | |
| `negative_prompt` input argument. | |
| generated_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings from the GPT2 langauge model. Can be used to easily tweak text inputs, | |
| *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input | |
| argument. | |
| negative_generated_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings from the GPT2 language model. Can be used to easily tweak text | |
| inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from | |
| `negative_prompt` input argument. | |
| attention_mask (`torch.LongTensor`, *optional*): | |
| Pre-computed attention mask to be applied to the `prompt_embeds`. If not provided, attention mask will | |
| be computed from `prompt` input argument. | |
| negative_attention_mask (`torch.LongTensor`, *optional*): | |
| Pre-computed attention mask to be applied to the `negative_prompt_embeds`. If not provided, attention | |
| mask will be computed from `negative_prompt` input argument. | |
| max_new_tokens (`int`, *optional*, defaults to None): | |
| The number of new tokens to generate with the GPT2 language model. | |
| Returns: | |
| prompt_embeds (`torch.FloatTensor`): | |
| Text embeddings from the Flan T5 model. | |
| attention_mask (`torch.LongTensor`): | |
| Attention mask to be applied to the `prompt_embeds`. | |
| generated_prompt_embeds (`torch.FloatTensor`): | |
| Text embeddings generated from the GPT2 langauge model. | |
| Example: | |
| ```python | |
| >>> import scipy | |
| >>> import torch | |
| >>> from diffusers import AudioLDM2Pipeline | |
| >>> repo_id = "cvssp/audioldm2" | |
| >>> pipe = AudioLDM2Pipeline.from_pretrained(repo_id, torch_dtype=torch.float16) | |
| >>> pipe = pipe.to("cuda") | |
| >>> # Get text embedding vectors | |
| >>> prompt_embeds, attention_mask, generated_prompt_embeds = pipe.encode_prompt( | |
| ... prompt="Techno music with a strong, upbeat tempo and high melodic riffs", | |
| ... device="cuda", | |
| ... do_classifier_free_guidance=True, | |
| ... ) | |
| >>> # Pass text embeddings to pipeline for text-conditional audio generation | |
| >>> audio = pipe( | |
| ... prompt_embeds=prompt_embeds, | |
| ... attention_mask=attention_mask, | |
| ... generated_prompt_embeds=generated_prompt_embeds, | |
| ... num_inference_steps=200, | |
| ... audio_length_in_s=10.0, | |
| ... ).audios[0] | |
| >>> # save generated audio sample | |
| >>> scipy.io.wavfile.write("techno.wav", rate=16000, data=audio) | |
| ```""" | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| # Define tokenizers and text encoders | |
| tokenizers = [self.tokenizer, self.tokenizer_2] | |
| text_encoders = [self.text_encoder, self.text_encoder_2] | |
| if prompt_embeds is None: | |
| prompt_embeds_list = [] | |
| attention_mask_list = [] | |
| for tokenizer, text_encoder in zip(tokenizers, text_encoders): | |
| text_inputs = tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| attention_mask = text_inputs.attention_mask | |
| untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) | |
| logger.warning( | |
| f"The following part of your input was truncated because {text_encoder.config.model_type} can " | |
| f"only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| text_input_ids = text_input_ids.to(device) | |
| attention_mask = attention_mask.to(device) | |
| if text_encoder.config.model_type == "clap": | |
| prompt_embeds = text_encoder.get_text_features( | |
| text_input_ids, | |
| attention_mask=attention_mask, | |
| ) | |
| # append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size) | |
| prompt_embeds = prompt_embeds[:, None, :] | |
| # make sure that we attend to this single hidden-state | |
| attention_mask = attention_mask.new_ones((batch_size, 1)) | |
| else: | |
| prompt_embeds = text_encoder( | |
| text_input_ids, | |
| attention_mask=attention_mask, | |
| ) | |
| prompt_embeds = prompt_embeds[0] | |
| prompt_embeds_list.append(prompt_embeds) | |
| attention_mask_list.append(attention_mask) | |
| projection_output = self.projection_model( | |
| hidden_states=prompt_embeds_list[0], | |
| hidden_states_1=prompt_embeds_list[1], | |
| attention_mask=attention_mask_list[0], | |
| attention_mask_1=attention_mask_list[1], | |
| ) | |
| projected_prompt_embeds = projection_output.hidden_states | |
| projected_attention_mask = projection_output.attention_mask | |
| generated_prompt_embeds = self.generate_language_model( | |
| projected_prompt_embeds, | |
| attention_mask=projected_attention_mask, | |
| max_new_tokens=max_new_tokens, | |
| ) | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
| attention_mask = ( | |
| attention_mask.to(device=device) | |
| if attention_mask is not None | |
| else torch.ones(prompt_embeds.shape[:2], dtype=torch.long, device=device) | |
| ) | |
| generated_prompt_embeds = generated_prompt_embeds.to(dtype=self.language_model.dtype, device=device) | |
| bs_embed, seq_len, hidden_size = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_waveforms_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len, hidden_size) | |
| # duplicate attention mask for each generation per prompt | |
| attention_mask = attention_mask.repeat(1, num_waveforms_per_prompt) | |
| attention_mask = attention_mask.view(bs_embed * num_waveforms_per_prompt, seq_len) | |
| bs_embed, seq_len, hidden_size = generated_prompt_embeds.shape | |
| # duplicate generated embeddings for each generation per prompt, using mps friendly method | |
| generated_prompt_embeds = generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1) | |
| generated_prompt_embeds = generated_prompt_embeds.view( | |
| bs_embed * num_waveforms_per_prompt, seq_len, hidden_size | |
| ) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| negative_prompt_embeds_list = [] | |
| negative_attention_mask_list = [] | |
| max_length = prompt_embeds.shape[1] | |
| for tokenizer, text_encoder in zip(tokenizers, text_encoders): | |
| uncond_input = tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=tokenizer.model_max_length | |
| if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast)) | |
| else max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| uncond_input_ids = uncond_input.input_ids.to(device) | |
| negative_attention_mask = uncond_input.attention_mask.to(device) | |
| if text_encoder.config.model_type == "clap": | |
| negative_prompt_embeds = text_encoder.get_text_features( | |
| uncond_input_ids, | |
| attention_mask=negative_attention_mask, | |
| ) | |
| # append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size) | |
| negative_prompt_embeds = negative_prompt_embeds[:, None, :] | |
| # make sure that we attend to this single hidden-state | |
| negative_attention_mask = negative_attention_mask.new_ones((batch_size, 1)) | |
| else: | |
| negative_prompt_embeds = text_encoder( | |
| uncond_input_ids, | |
| attention_mask=negative_attention_mask, | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| negative_prompt_embeds_list.append(negative_prompt_embeds) | |
| negative_attention_mask_list.append(negative_attention_mask) | |
| projection_output = self.projection_model( | |
| hidden_states=negative_prompt_embeds_list[0], | |
| hidden_states_1=negative_prompt_embeds_list[1], | |
| attention_mask=negative_attention_mask_list[0], | |
| attention_mask_1=negative_attention_mask_list[1], | |
| ) | |
| negative_projected_prompt_embeds = projection_output.hidden_states | |
| negative_projected_attention_mask = projection_output.attention_mask | |
| negative_generated_prompt_embeds = self.generate_language_model( | |
| negative_projected_prompt_embeds, | |
| attention_mask=negative_projected_attention_mask, | |
| max_new_tokens=max_new_tokens, | |
| ) | |
| if do_classifier_free_guidance: | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
| negative_attention_mask = ( | |
| negative_attention_mask.to(device=device) | |
| if negative_attention_mask is not None | |
| else torch.ones(negative_prompt_embeds.shape[:2], dtype=torch.long, device=device) | |
| ) | |
| negative_generated_prompt_embeds = negative_generated_prompt_embeds.to( | |
| dtype=self.language_model.dtype, device=device | |
| ) | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len, -1) | |
| # duplicate unconditional attention mask for each generation per prompt | |
| negative_attention_mask = negative_attention_mask.repeat(1, num_waveforms_per_prompt) | |
| negative_attention_mask = negative_attention_mask.view(batch_size * num_waveforms_per_prompt, seq_len) | |
| # duplicate unconditional generated embeddings for each generation per prompt | |
| seq_len = negative_generated_prompt_embeds.shape[1] | |
| negative_generated_prompt_embeds = negative_generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1) | |
| negative_generated_prompt_embeds = negative_generated_prompt_embeds.view( | |
| batch_size * num_waveforms_per_prompt, seq_len, -1 | |
| ) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| attention_mask = torch.cat([negative_attention_mask, attention_mask]) | |
| generated_prompt_embeds = torch.cat([negative_generated_prompt_embeds, generated_prompt_embeds]) | |
| return prompt_embeds, attention_mask, generated_prompt_embeds | |
| # Copied from diffusers.pipelines.audioldm.pipeline_audioldm.AudioLDMPipeline.mel_spectrogram_to_waveform | |
| def mel_spectrogram_to_waveform(self, mel_spectrogram): | |
| if mel_spectrogram.dim() == 4: | |
| mel_spectrogram = mel_spectrogram.squeeze(1) | |
| waveform = self.vocoder(mel_spectrogram) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
| waveform = waveform.cpu().float() | |
| return waveform | |
| def score_waveforms(self, text, audio, num_waveforms_per_prompt, device, dtype): | |
| if not is_librosa_available(): | |
| logger.info( | |
| "Automatic scoring of the generated audio waveforms against the input prompt text requires the " | |
| "`librosa` package to resample the generated waveforms. Returning the audios in the order they were " | |
| "generated. To enable automatic scoring, install `librosa` with: `pip install librosa`." | |
| ) | |
| return audio | |
| inputs = self.tokenizer(text, return_tensors="pt", padding=True) | |
| resampled_audio = librosa.resample( | |
| audio.numpy(), orig_sr=self.vocoder.config.sampling_rate, target_sr=self.feature_extractor.sampling_rate | |
| ) | |
| inputs["input_features"] = self.feature_extractor( | |
| list(resampled_audio), return_tensors="pt", sampling_rate=self.feature_extractor.sampling_rate | |
| ).input_features.type(dtype) | |
| inputs = inputs.to(device) | |
| # compute the audio-text similarity score using the CLAP model | |
| logits_per_text = self.text_encoder(**inputs).logits_per_text | |
| # sort by the highest matching generations per prompt | |
| indices = torch.argsort(logits_per_text, dim=1, descending=True)[:, :num_waveforms_per_prompt] | |
| audio = torch.index_select(audio, 0, indices.reshape(-1).cpu()) | |
| return audio | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (Ξ·) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to Ξ· in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| audio_length_in_s, | |
| vocoder_upsample_factor, | |
| callback_steps, | |
| negative_prompt=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| generated_prompt_embeds=None, | |
| negative_generated_prompt_embeds=None, | |
| attention_mask=None, | |
| negative_attention_mask=None, | |
| ): | |
| min_audio_length_in_s = vocoder_upsample_factor * self.vae_scale_factor | |
| if audio_length_in_s < min_audio_length_in_s: | |
| raise ValueError( | |
| f"`audio_length_in_s` has to be a positive value greater than or equal to {min_audio_length_in_s}, but " | |
| f"is {audio_length_in_s}." | |
| ) | |
| if self.vocoder.config.model_in_dim % self.vae_scale_factor != 0: | |
| raise ValueError( | |
| f"The number of frequency bins in the vocoder's log-mel spectrogram has to be divisible by the " | |
| f"VAE scale factor, but got {self.vocoder.config.model_in_dim} bins and a scale factor of " | |
| f"{self.vae_scale_factor}." | |
| ) | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and (prompt_embeds is None or generated_prompt_embeds is None): | |
| raise ValueError( | |
| "Provide either `prompt`, or `prompt_embeds` and `generated_prompt_embeds`. Cannot leave " | |
| "`prompt` undefined without specifying both `prompt_embeds` and `generated_prompt_embeds`." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| elif negative_prompt_embeds is not None and negative_generated_prompt_embeds is None: | |
| raise ValueError( | |
| "Cannot forward `negative_prompt_embeds` without `negative_generated_prompt_embeds`. Ensure that" | |
| "both arguments are specified" | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| if attention_mask is not None and attention_mask.shape != prompt_embeds.shape[:2]: | |
| raise ValueError( | |
| "`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:" | |
| f"`attention_mask: {attention_mask.shape} != `prompt_embeds` {prompt_embeds.shape}" | |
| ) | |
| if generated_prompt_embeds is not None and negative_generated_prompt_embeds is not None: | |
| if generated_prompt_embeds.shape != negative_generated_prompt_embeds.shape: | |
| raise ValueError( | |
| "`generated_prompt_embeds` and `negative_generated_prompt_embeds` must have the same shape when " | |
| f"passed directly, but got: `generated_prompt_embeds` {generated_prompt_embeds.shape} != " | |
| f"`negative_generated_prompt_embeds` {negative_generated_prompt_embeds.shape}." | |
| ) | |
| if ( | |
| negative_attention_mask is not None | |
| and negative_attention_mask.shape != negative_prompt_embeds.shape[:2] | |
| ): | |
| raise ValueError( | |
| "`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:" | |
| f"`attention_mask: {negative_attention_mask.shape} != `prompt_embeds` {negative_prompt_embeds.shape}" | |
| ) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents with width->self.vocoder.config.model_in_dim | |
| def prepare_latents(self, batch_size, num_channels_latents, height, dtype, device, generator, latents=None): | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| height // self.vae_scale_factor, | |
| self.vocoder.config.model_in_dim // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| audio_length_in_s: Optional[float] = None, | |
| num_inference_steps: int = 200, | |
| guidance_scale: float = 3.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_waveforms_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| generated_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_generated_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| negative_attention_mask: Optional[torch.LongTensor] = None, | |
| max_new_tokens: Optional[int] = None, | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: Optional[int] = 1, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| output_type: Optional[str] = "np", | |
| return_prompts_only: Optional[bool] = False | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide audio generation. If not defined, you need to pass `prompt_embeds`. | |
| audio_length_in_s (`int`, *optional*, defaults to 10.24): | |
| The length of the generated audio sample in seconds. | |
| num_inference_steps (`int`, *optional*, defaults to 200): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality audio at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 3.5): | |
| A higher guidance scale value encourages the model to generate audio that is closely linked to the text | |
| `prompt` at the expense of lower sound quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to not include in audio generation. If not defined, you need to | |
| pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
| num_waveforms_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of waveforms to generate per prompt. If `num_waveforms_per_prompt > 1`, then automatic | |
| scoring is performed between the generated outputs and the text prompt. This scoring ranks the | |
| generated waveforms based on their cosine similarity with the text input in the joint text-audio | |
| embedding space. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (Ξ·) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
| to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for spectrogram | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor is generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
| provided, text embeddings are generated from the `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
| not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
| generated_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings from the GPT2 langauge model. Can be used to easily tweak text inputs, | |
| *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input | |
| argument. | |
| negative_generated_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings from the GPT2 language model. Can be used to easily tweak text | |
| inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from | |
| `negative_prompt` input argument. | |
| attention_mask (`torch.LongTensor`, *optional*): | |
| Pre-computed attention mask to be applied to the `prompt_embeds`. If not provided, attention mask will | |
| be computed from `prompt` input argument. | |
| negative_attention_mask (`torch.LongTensor`, *optional*): | |
| Pre-computed attention mask to be applied to the `negative_prompt_embeds`. If not provided, attention | |
| mask will be computed from `negative_prompt` input argument. | |
| max_new_tokens (`int`, *optional*, defaults to None): | |
| Number of new tokens to generate with the GPT2 language model. If not provided, number of tokens will | |
| be taken from the config of the model. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that calls every `callback_steps` steps during inference. The function is called with the | |
| following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function is called. If not specified, the callback is called at | |
| every step. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
| [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| output_type (`str`, *optional*, defaults to `"np"`): | |
| The output format of the generated audio. Choose between `"np"` to return a NumPy `np.ndarray` or | |
| `"pt"` to return a PyTorch `torch.Tensor` object. Set to `"latent"` to return the latent diffusion | |
| model (LDM) output. | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
| otherwise a `tuple` is returned where the first element is a list with the generated audio. | |
| """ | |
| # 0. Convert audio input length from seconds to spectrogram height | |
| vocoder_upsample_factor = np.prod(self.vocoder.config.upsample_rates) / self.vocoder.config.sampling_rate | |
| if audio_length_in_s is None: | |
| audio_length_in_s = self.unet.config.sample_size * self.vae_scale_factor * vocoder_upsample_factor | |
| height = int(audio_length_in_s / vocoder_upsample_factor) | |
| original_waveform_length = int(audio_length_in_s * self.vocoder.config.sampling_rate) | |
| if height % self.vae_scale_factor != 0: | |
| height = int(np.ceil(height / self.vae_scale_factor)) * self.vae_scale_factor | |
| logger.info( | |
| f"Audio length in seconds {audio_length_in_s} is increased to {height * vocoder_upsample_factor} " | |
| f"so that it can be handled by the model. It will be cut to {audio_length_in_s} after the " | |
| f"denoising process." | |
| ) | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| audio_length_in_s, | |
| vocoder_upsample_factor, | |
| callback_steps, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| generated_prompt_embeds, | |
| negative_generated_prompt_embeds, | |
| attention_mask, | |
| negative_attention_mask, | |
| ) | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| prompt_embeds, attention_mask, generated_prompt_embeds = self.encode_prompt( | |
| prompt, | |
| device, | |
| num_waveforms_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| generated_prompt_embeds=generated_prompt_embeds, | |
| negative_generated_prompt_embeds=negative_generated_prompt_embeds, | |
| attention_mask=attention_mask, | |
| negative_attention_mask=negative_attention_mask, | |
| max_new_tokens=max_new_tokens, | |
| ) | |
| if return_prompts_only: | |
| return prompt_embeds, generated_prompt_embeds | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_waveforms_per_prompt, | |
| num_channels_latents, | |
| height, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Prepare extra step kwargs | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=generated_prompt_embeds, | |
| encoder_hidden_states_1=prompt_embeds, | |
| encoder_attention_mask_1=attention_mask, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| self.maybe_free_model_hooks() | |
| # 8. Post-processing | |
| if not output_type == "latent": | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| mel_spectrogram = self.vae.decode(latents).sample | |
| else: | |
| return AudioPipelineOutput(audios=latents) | |
| audio = self.mel_spectrogram_to_waveform(mel_spectrogram) | |
| audio = audio[:, :original_waveform_length] | |
| # 9. Automatic scoring | |
| if num_waveforms_per_prompt > 1 and prompt is not None: | |
| audio = self.score_waveforms( | |
| text=prompt, | |
| audio=audio, | |
| num_waveforms_per_prompt=num_waveforms_per_prompt, | |
| device=device, | |
| dtype=prompt_embeds.dtype, | |
| ) | |
| if output_type == "np": | |
| audio = audio.numpy() | |
| if not return_dict: | |
| return (audio,) | |
| return AudioPipelineOutput(audios=audio) |