|
import os |
|
import gradio as gr |
|
from llama_cpp import Llama |
|
from huggingface_hub import hf_hub_download, login |
|
import os |
|
|
|
login(os.getenv("HF_TOKEN")) |
|
|
|
model = Llama( |
|
model_path=hf_hub_download( |
|
repo_id=os.environ.get("REPO_ID", "Lyte/HuatuoGPT-o1-7B-Q4_K_M-GGUF"), |
|
filename=os.environ.get("MODEL_FILE", "huatuogpt-o1-7b-q4_k_m.gguf"), |
|
) |
|
) |
|
|
|
DESCRIPTION = ''' |
|
# FreedomIntelligence/HuatuoGPT-o1-7B | Duplicate the space and set it to private for faster & personal inference for free. |
|
HuatuoGPT-o1 is a medical LLM designed for advanced medical reasoning. |
|
It generates a complex thought process, reflecting and refining its reasoning, before providing a final response. |
|
|
|
**To start a new chat**, click "clear" and start a new dialog. |
|
''' |
|
|
|
LICENSE = """ |
|
--- Apache 2.0 License --- |
|
""" |
|
|
|
def generate_text(message, history, max_tokens=512, temperature=0.9, top_p=0.95): |
|
"""Generate a response using the Llama model.""" |
|
temp = "" |
|
response = model.create_chat_completion( |
|
messages=[{"role": "user", "content": message}], |
|
temperature=temperature, |
|
max_tokens=max_tokens, |
|
top_p=top_p, |
|
stream=True, |
|
) |
|
for streamed in response: |
|
delta = streamed["choices"][0].get("delta", {}) |
|
text_chunk = delta.get("content", "") |
|
temp += text_chunk |
|
yield temp |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(DESCRIPTION) |
|
|
|
chatbot = gr.ChatInterface( |
|
generate_text, |
|
title="FreedomIntelligence/HuatuoGPT-o1-7B | GGUF Demo", |
|
description="Edit settings below if needed.", |
|
examples=[ |
|
["How many r's are in the word strawberry?"], |
|
['How to stop a cough?'], |
|
['How do I relieve feet pain?'], |
|
], |
|
cache_examples=False, |
|
fill_height=True, |
|
fill_width=True |
|
) |
|
|
|
with gr.Accordion("Adjust Parameters", open=False): |
|
gr.Slider(minimum=512, maximum=4096, value=1024, step=1, label="Max Tokens") |
|
gr.Slider(minimum=0.1, maximum=1.5, value=0.9, step=0.1, label="Temperature") |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") |
|
|
|
gr.Markdown(LICENSE) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |