File size: 2,771 Bytes
fc46f2c
 
 
ebe9f12
372a5eb
ebe9f12
fc46f2c
 
 
e40962e
 
fc46f2c
 
 
 
372a5eb
b388fe7
 
fc46f2c
 
 
 
 
 
 
 
3f93878
 
 
 
fc46f2c
3f93878
 
 
fc46f2c
3f93878
fc46f2c
 
 
 
 
3f93878
 
fc46f2c
 
 
3f93878
 
fc46f2c
 
 
 
3f93878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc46f2c
 
372a5eb
 
fc46f2c
3f93878
 
fc46f2c
 
3f93878
fc46f2c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
import gradio as gr
from llama_cpp import Llama
from huggingface_hub import hf_hub_download #, login

#login(os.getenv("HF_TOKEN"))# my bad now its public

model = Llama(
    model_path=hf_hub_download(
        repo_id=os.environ.get("REPO_ID", "bartowski/HuatuoGPT-o1-7B-GGUF"),#"bartowski/HuatuoGPT-o1-7B-v0.1-GGUF"),
        filename=os.environ.get("MODEL_FILE", "HuatuoGPT-o1-7B-Q4_K_M.gguf"),#"HuatuoGPT-o1-7B-v0.1-Q4_0.gguf"),
    )
)

DESCRIPTION = '''
# FreedomIntelligence/HuatuoGPT-o1-7B | Duplicate the space and set it to private for faster & personal inference for free.
HuatuoGPT-o1 is a medical LLM designed for advanced medical reasoning.
It generates a complex thought process, reflecting and refining its reasoning, before providing a final response. 

**To start a new chat**, click "clear" and start a new dialog.
'''

LICENSE = """
--- Apache 2.0 License ---
"""

def user(message, history):
    return "", history + [{"role": "user", "content": message}]

def generate_text(history, max_tokens=512, temperature=0.9, top_p=0.95):
    """Generate a response using the Llama model."""
    messages = [{"role": item["role"], "content": item["content"]} for item in history[:-1]]
    message = history[-1]['content']
    
    response = model.create_chat_completion(
        messages=messages + [{"role": "user", "content": message}],
        temperature=temperature,
        max_tokens=max_tokens,
        top_p=top_p,
        stream=True,
    )
    history.append({"role": "assistant", "content": ""})

    for streamed in response:
        delta = streamed["choices"][0].get("delta", {})
        text_chunk = delta.get("content", "")
        history[-1]['content'] += text_chunk
        yield history

with gr.Blocks() as demo:
    gr.Markdown(DESCRIPTION)

    chatbot = gr.Chatbot(type="messages")
    msg = gr.Textbox()
    clear = gr.Button("Clear")

    with gr.Accordion("Adjust Parameters", open=False):
        max_tokens = gr.Slider(minimum=512, maximum=4096, value=1024, step=1, label="Max Tokens")
        temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.9, step=0.1, label="Temperature")
        top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")

    msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
        generate_text, [chatbot, max_tokens, temperature, top_p], chatbot
    )
    clear.click(lambda: None, None, chatbot, queue=False)

    gr.Examples(
        examples=[
            ["How many r's are in the word strawberry?"],
            ['How to stop a cough?'],
            ['How do I relieve feet pain?'],
        ],
        inputs=msg,
        label="Examples",
    )

    gr.Markdown(LICENSE)

if __name__ == "__main__":
    demo.launch()