from huggingface_hub import InferenceClient import os class ServerlessInference: def __init__(self, vector_store_text = None, vector_store_images = None): self.model:str = "HuggingFaceH4/zephyr-7b-beta" self.client = InferenceClient(api_key=os.getenv("HF_SERVELESS_API")) self.vs_text = vector_store_text self.vs_images = vector_store_images def test(self, query:str) -> str: '''Responds to query using llm''' messages:list = [ { "role": "user", "content": query } ] completion = self.client.chat.completions.create( model=self.model, messages=messages, max_tokens=500 ) return completion.choices[0].message.content def perform_rag(self, query:str): # First perform text search # Retrieval retrieved_docs = self.vs_text.similarity_search(query=query, k=5) retrieved_docs_text = [doc.page_content for doc in retrieved_docs] # We only need the text of the documents context = "\nExtracted documents:\n" context += "".join([f"Document {str(i)}:::\n" + doc for i, doc in enumerate(retrieved_docs_text)]) # Augmented Generation messages:list = [ { "role": "system", "content": """Using the information contained in the context, give a comprehensive answer to the question. Respond only to the question asked, response should be concise and relevant to the question. If the answer cannot be deduced from the context, do not give an answer. Instead say `Theres lack of information in document source.`""", }, { "role": "user", "content": """Context: {context} --- Now here is the question you need to answer. Question: {question}""".format(context=context, question=query), }, ] completion = self.client.chat.completions.create( model=self.model, messages=messages, max_tokens=500 ) response_text = completion.choices[0].message.content # Image retrieval retrieved_image = self.vs_images.similarity_search(query=query, k=5) retrieved_docs_text = [doc.page_content for doc in retrieved_image] # We only need the text of the documents context = "\nExtracted Images:\n" context += "".join([f"Document {str(i)}:::\n" + doc for i, doc in enumerate(retrieved_docs_text)]) messages:list = [ { "role": "system", "content": """Using the information contained in the context about the images stored in the database, give a list of identifiers of the image that best represent the kind of information seeked by the question. Respond only to the question asked. Provide only number(s) of the source images relevant to the question. If the image is relevant to the question then output format should be a list [1, 3, 0] otherwise reply with [] (empty list)""", }, { "role": "user", "content": """Context: {context} --- Now here is the question you need to answer. Question: {question}""".format(context=context, question=query), }, ] completion = self.client.chat.completions.create( model=self.model, messages=messages, max_tokens=500 ) images_list = completion.choices[0].message.content return response_text + str(images_list)