Spaces:
Sleeping
Sleeping
Deepak Sahu
commited on
Commit
·
e77e4c7
1
Parent(s):
0b99bf5
different output view
Browse files- app.py +19 -4
- z_embedding.py +1 -1
app.py
CHANGED
@@ -50,9 +50,23 @@ def get_recommendation(book_title: str) -> dict:
|
|
50 |
df_ranked = df_ranked.reset_index()
|
51 |
|
52 |
books = df_ranked["book_name"].to_list()[:N_RECOMMENDS]
|
|
|
53 |
scores = similarity[ranks][:N_RECOMMENDS]
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
return {book: score for book, score in zip(books, scores)} # referene: https://huggingface.co/docs/hub/en/spaces-sdks-gradio
|
58 |
|
@@ -61,8 +75,9 @@ def get_recommendation(book_title: str) -> dict:
|
|
61 |
|
62 |
# We instantiate the Textbox class
|
63 |
textbox = gr.Textbox(label="Write random title", placeholder="The Man who knew", lines=2)
|
64 |
-
label = gr.Label(label="Result", num_top_classes=N_RECOMMENDS)
|
|
|
65 |
|
66 |
-
demo = gr.Interface(fn=get_recommendation, inputs=textbox, outputs=
|
67 |
|
68 |
demo.launch()
|
|
|
50 |
df_ranked = df_ranked.reset_index()
|
51 |
|
52 |
books = df_ranked["book_name"].to_list()[:N_RECOMMENDS]
|
53 |
+
summaries = df_ranked["summaries"].to_list()[:N_RECOMMENDS]
|
54 |
scores = similarity[ranks][:N_RECOMMENDS]
|
55 |
+
|
56 |
+
output_data_model: list[dict] = [ {"Book": b, "Similarity Score": s, "Description": d} for b, s, d in zip(books, summaries, scores)]
|
57 |
+
|
58 |
+
# Generate card-style HTML
|
59 |
+
html = "<div style='display: flex; flex-wrap: wrap; gap: 1rem;'>"
|
60 |
+
for rec in output_data_model:
|
61 |
+
html += f"""
|
62 |
+
<div style='border: 1px solid #ddd; border-radius: 8px; padding: 1rem; width: 200px; box-shadow: 2px 2px 5px rgba(0,0,0,0.1);'>
|
63 |
+
<h3 style='margin: 0;'>{rec['Book']}</h3>
|
64 |
+
<p style='margin: 0.5rem 0;'>Similarity Score: {rec['Similarity Score']}</p>
|
65 |
+
<p style='font-size: 0.9rem; color: #555;'>{rec['Description']}</p>
|
66 |
+
</div>
|
67 |
+
"""
|
68 |
+
html += "</div>"
|
69 |
+
return html
|
70 |
|
71 |
return {book: score for book, score in zip(books, scores)} # referene: https://huggingface.co/docs/hub/en/spaces-sdks-gradio
|
72 |
|
|
|
75 |
|
76 |
# We instantiate the Textbox class
|
77 |
textbox = gr.Textbox(label="Write random title", placeholder="The Man who knew", lines=2)
|
78 |
+
# label = gr.Label(label="Result", num_top_classes=N_RECOMMENDS)
|
79 |
+
output = gr.HTML(label="Recommended Books")
|
80 |
|
81 |
+
demo = gr.Interface(fn=get_recommendation, inputs=textbox, outputs=output)
|
82 |
|
83 |
demo.launch()
|
z_embedding.py
CHANGED
@@ -14,7 +14,7 @@ CACHE_SUMMARY_EMB_NPY = "app_cache/summary_vectors.npy"
|
|
14 |
|
15 |
import gradio as gr
|
16 |
|
17 |
-
if gr.NO_RELOAD:
|
18 |
model = SentenceTransformer(EMB_MODEL)
|
19 |
|
20 |
|
|
|
14 |
|
15 |
import gradio as gr
|
16 |
|
17 |
+
if gr.NO_RELOAD: # Required for faster working with HF spaces
|
18 |
model = SentenceTransformer(EMB_MODEL)
|
19 |
|
20 |
|