Spaces:
Running
Running
Deepak Sahu
commited on
Commit
·
acffe44
1
Parent(s):
e60054b
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,9 +2,6 @@
|
|
| 2 |
CLEAN_DF_UNIQUE_TITLES = "unique_titles_books_summary.csv"
|
| 3 |
N_RECOMMENDS = 5
|
| 4 |
|
| 5 |
-
# def get_recommendation(book_title: str) -> str:
|
| 6 |
-
# return book_title
|
| 7 |
-
|
| 8 |
# from transformers import pipeline, set_seed
|
| 9 |
|
| 10 |
# # CONST
|
|
@@ -14,19 +11,6 @@ N_RECOMMENDS = 5
|
|
| 14 |
|
| 15 |
# generator_model = pipeline('text-generation', model=TRAINED_CASUAL_MODEL)
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
# def sanity_check():
|
| 20 |
-
# '''Validates whether the vectors count is of same as summaries present else RAISES Error
|
| 21 |
-
# '''
|
| 22 |
-
# global BOOKS_CSV, SUMMARY_VECTORS
|
| 23 |
-
# df = get_dataframe(BOOKS_CSV)
|
| 24 |
-
# vectors = np.load(SUMMARY_VECTORS)
|
| 25 |
-
# assert df.shape[0] == vectors.shape[0]
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
# Reference: https://huggingface.co/learn/nlp-course/en/chapter9/2
|
| 29 |
-
|
| 30 |
import gradio as gr
|
| 31 |
from z_similarity import computes_similarity_w_hypothetical
|
| 32 |
from z_hypothetical_summary import generate_summaries
|
|
@@ -36,10 +20,6 @@ books_df = get_dataframe(CLEAN_DF_UNIQUE_TITLES)
|
|
| 36 |
|
| 37 |
|
| 38 |
def get_recommendation(book_title: str) -> dict:
|
| 39 |
-
global generator_model
|
| 40 |
-
# return "Hello"
|
| 41 |
-
# # Generate hypothetical summary
|
| 42 |
-
# value = generator_model("hello", max_length=50)
|
| 43 |
fake_summaries = generate_summaries(book_title=book_title, n_samples=5) # other parameters are set to default in the function
|
| 44 |
|
| 45 |
# Compute Simialrity
|
|
@@ -58,31 +38,25 @@ def get_recommendation(book_title: str) -> dict:
|
|
| 58 |
#
|
| 59 |
# book_summaries: list[str] = [f"**{book}** \n {summary}" for book, summary in zip(books, summaries)]
|
| 60 |
|
| 61 |
-
# return response
|
| 62 |
# Generate card-style HTML
|
| 63 |
html = "<div style='display: flex; flex-wrap: wrap; gap: 1rem;'>"
|
| 64 |
for book, summary in zip(books, summaries):
|
| 65 |
html += f"""
|
| 66 |
<div style='border: 1px solid #ddd; border-radius: 8px; padding: 1rem; width: 200px; box-shadow: 2px 2px 5px rgba(0,0,0,0.1);'>
|
| 67 |
<h3 style='margin: 0;'>{book}</h3>
|
| 68 |
-
<p style='font-size: 0.9rem; color: #555;'>{
|
| 69 |
</div>
|
| 70 |
"""
|
| 71 |
html += "</div>"
|
| 72 |
|
| 73 |
# Club the output to be processed by gradio
|
| 74 |
-
response = [label_similarity,
|
| 75 |
|
| 76 |
return response
|
| 77 |
|
| 78 |
-
return fake_summaries[0]
|
| 79 |
-
# return str(value)
|
| 80 |
-
|
| 81 |
# We instantiate the Textbox class
|
| 82 |
textbox = gr.Textbox(label="Write random title", placeholder="The Man who knew", lines=2)
|
| 83 |
-
|
| 84 |
-
# output = [gr.Label(label="Result", num_top_classes=N_RECOMMENDS)] + [gr.Textbox(label="Recommendation") for i in range(N_RECOMMENDS)]
|
| 85 |
-
output = [gr.Label(label="Similarity"), ] # gr.HTML(label="Books Descriptions")]
|
| 86 |
demo = gr.Interface(fn=get_recommendation, inputs=textbox, outputs=output)
|
| 87 |
|
| 88 |
demo.launch()
|
|
|
|
| 2 |
CLEAN_DF_UNIQUE_TITLES = "unique_titles_books_summary.csv"
|
| 3 |
N_RECOMMENDS = 5
|
| 4 |
|
|
|
|
|
|
|
|
|
|
| 5 |
# from transformers import pipeline, set_seed
|
| 6 |
|
| 7 |
# # CONST
|
|
|
|
| 11 |
|
| 12 |
# generator_model = pipeline('text-generation', model=TRAINED_CASUAL_MODEL)
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
import gradio as gr
|
| 15 |
from z_similarity import computes_similarity_w_hypothetical
|
| 16 |
from z_hypothetical_summary import generate_summaries
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
def get_recommendation(book_title: str) -> dict:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
fake_summaries = generate_summaries(book_title=book_title, n_samples=5) # other parameters are set to default in the function
|
| 24 |
|
| 25 |
# Compute Simialrity
|
|
|
|
| 38 |
#
|
| 39 |
# book_summaries: list[str] = [f"**{book}** \n {summary}" for book, summary in zip(books, summaries)]
|
| 40 |
|
|
|
|
| 41 |
# Generate card-style HTML
|
| 42 |
html = "<div style='display: flex; flex-wrap: wrap; gap: 1rem;'>"
|
| 43 |
for book, summary in zip(books, summaries):
|
| 44 |
html += f"""
|
| 45 |
<div style='border: 1px solid #ddd; border-radius: 8px; padding: 1rem; width: 200px; box-shadow: 2px 2px 5px rgba(0,0,0,0.1);'>
|
| 46 |
<h3 style='margin: 0;'>{book}</h3>
|
| 47 |
+
<p style='font-size: 0.9rem; color: #555;'>{summary}</p>
|
| 48 |
</div>
|
| 49 |
"""
|
| 50 |
html += "</div>"
|
| 51 |
|
| 52 |
# Club the output to be processed by gradio
|
| 53 |
+
response = [label_similarity, html]
|
| 54 |
|
| 55 |
return response
|
| 56 |
|
|
|
|
|
|
|
|
|
|
| 57 |
# We instantiate the Textbox class
|
| 58 |
textbox = gr.Textbox(label="Write random title", placeholder="The Man who knew", lines=2)
|
| 59 |
+
output = [gr.Label(label="Similarity"), gr.HTML(label="Books Descriptions")]
|
|
|
|
|
|
|
| 60 |
demo = gr.Interface(fn=get_recommendation, inputs=textbox, outputs=output)
|
| 61 |
|
| 62 |
demo.launch()
|