Deepak Sahu
adding other files
dc4b86a
raw
history blame
1.19 kB
# from z_utils import get_dataframe
# import numpy as np
# # CONST
# SUMMARY_VECTORS = "app_cache/summary_vectors.npy"
# BOOKS_CSV = "clean_books_summary.csv"
# def get_recommendation(book_title: str) -> str:
# return book_title
# def sanity_check():
# '''Validates whether the vectors count is of same as summaries present else RAISES Error
# '''
# global BOOKS_CSV, SUMMARY_VECTORS
# df = get_dataframe(BOOKS_CSV)
# vectors = np.load(SUMMARY_VECTORS)
# assert df.shape[0] == vectors.shape[0]
# Reference: https://huggingface.co/learn/nlp-course/en/chapter9/2
import gradio as gr
from z_similarity import computes_similarity_w_hypothetical
from z_hypothetical_summary import generate_summaries
def get_recommendation(book_title: str):
# Generate hypothetical summary
fake_summaries = generate_summaries(book_title=book_title, n_samples=5) # other parameters are set to default in the function
return fake_summaries[0]
# We instantiate the Textbox class
textbox = gr.Textbox(label="Write truth you wana Know:", placeholder="John Doe", lines=2)
demo = gr.Interface(fn=get_recommendation, inputs=textbox, outputs="text")
demo.launch()