import gradio as gr import requests API_URL = "http://localhost:8000/chat" def chat_with_agentiq(message, history): # Convert Gradio history to ChatML-style format messages = [] for user_msg, agent_msg in history: messages.append({"role": "User", "content": user_msg}) messages.append({"role": "Assistant", "content": agent_msg}) messages.append({"role": "User", "content": message}) payload = { "messages": messages, "model": "", # Fill in your model name if required "temperature": 0.7, "max_tokens": 512, "top_p": 1.0, "additionalProp1": {} } try: response = requests.post(API_URL, json=payload) data = response.json() reply = data["choices"][0]["message"]["content"] except Exception as e: reply = f"[Error: {str(e)}]" return reply demo= gr.ChatInterface(fn=chat_with_agentiq, title="AgentIQ Chat") if __name__=="__main__": demo.launch(server_name="0.0.0.0", server_port=7860)