Spaces:
Running
Running
import gradio as gr | |
import requests | |
API_URL = "http://localhost:8000/chat" | |
def chat_with_agentiq(message, history): | |
# Convert Gradio history to ChatML-style format | |
messages = [] | |
for user_msg, agent_msg in history: | |
messages.append({"role": "User", "content": user_msg}) | |
messages.append({"role": "Assistant", "content": agent_msg}) | |
messages.append({"role": "User", "content": message}) | |
payload = { | |
"messages": messages, | |
"model": "", # Fill in your model name if required | |
"temperature": 0.7, | |
"max_tokens": 512, | |
"top_p": 1.0, | |
"additionalProp1": {} | |
} | |
try: | |
response = requests.post(API_URL, json=payload) | |
data = response.json() | |
reply = data["choices"][0]["message"]["content"] | |
except Exception as e: | |
reply = f"[Error: {str(e)}]" | |
return reply | |
demo= gr.ChatInterface(fn=chat_with_agentiq, title="AgentIQ Chat") | |
if __name__=="__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860) |