Create vtoonify/model/stylegan/lpips/pretrained_networks.py
Browse files
vtoonify/model/stylegan/lpips/pretrained_networks.py
ADDED
|
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import namedtuple
|
| 2 |
+
import torch
|
| 3 |
+
from torchvision import models as tv
|
| 4 |
+
from IPython import embed
|
| 5 |
+
|
| 6 |
+
class squeezenet(torch.nn.Module):
|
| 7 |
+
def __init__(self, requires_grad=False, pretrained=True):
|
| 8 |
+
super(squeezenet, self).__init__()
|
| 9 |
+
pretrained_features = tv.squeezenet1_1(pretrained=pretrained).features
|
| 10 |
+
self.slice1 = torch.nn.Sequential()
|
| 11 |
+
self.slice2 = torch.nn.Sequential()
|
| 12 |
+
self.slice3 = torch.nn.Sequential()
|
| 13 |
+
self.slice4 = torch.nn.Sequential()
|
| 14 |
+
self.slice5 = torch.nn.Sequential()
|
| 15 |
+
self.slice6 = torch.nn.Sequential()
|
| 16 |
+
self.slice7 = torch.nn.Sequential()
|
| 17 |
+
self.N_slices = 7
|
| 18 |
+
for x in range(2):
|
| 19 |
+
self.slice1.add_module(str(x), pretrained_features[x])
|
| 20 |
+
for x in range(2,5):
|
| 21 |
+
self.slice2.add_module(str(x), pretrained_features[x])
|
| 22 |
+
for x in range(5, 8):
|
| 23 |
+
self.slice3.add_module(str(x), pretrained_features[x])
|
| 24 |
+
for x in range(8, 10):
|
| 25 |
+
self.slice4.add_module(str(x), pretrained_features[x])
|
| 26 |
+
for x in range(10, 11):
|
| 27 |
+
self.slice5.add_module(str(x), pretrained_features[x])
|
| 28 |
+
for x in range(11, 12):
|
| 29 |
+
self.slice6.add_module(str(x), pretrained_features[x])
|
| 30 |
+
for x in range(12, 13):
|
| 31 |
+
self.slice7.add_module(str(x), pretrained_features[x])
|
| 32 |
+
if not requires_grad:
|
| 33 |
+
for param in self.parameters():
|
| 34 |
+
param.requires_grad = False
|
| 35 |
+
|
| 36 |
+
def forward(self, X):
|
| 37 |
+
h = self.slice1(X)
|
| 38 |
+
h_relu1 = h
|
| 39 |
+
h = self.slice2(h)
|
| 40 |
+
h_relu2 = h
|
| 41 |
+
h = self.slice3(h)
|
| 42 |
+
h_relu3 = h
|
| 43 |
+
h = self.slice4(h)
|
| 44 |
+
h_relu4 = h
|
| 45 |
+
h = self.slice5(h)
|
| 46 |
+
h_relu5 = h
|
| 47 |
+
h = self.slice6(h)
|
| 48 |
+
h_relu6 = h
|
| 49 |
+
h = self.slice7(h)
|
| 50 |
+
h_relu7 = h
|
| 51 |
+
vgg_outputs = namedtuple("SqueezeOutputs", ['relu1','relu2','relu3','relu4','relu5','relu6','relu7'])
|
| 52 |
+
out = vgg_outputs(h_relu1,h_relu2,h_relu3,h_relu4,h_relu5,h_relu6,h_relu7)
|
| 53 |
+
|
| 54 |
+
return out
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class alexnet(torch.nn.Module):
|
| 58 |
+
def __init__(self, requires_grad=False, pretrained=True):
|
| 59 |
+
super(alexnet, self).__init__()
|
| 60 |
+
alexnet_pretrained_features = tv.alexnet(pretrained=pretrained).features
|
| 61 |
+
self.slice1 = torch.nn.Sequential()
|
| 62 |
+
self.slice2 = torch.nn.Sequential()
|
| 63 |
+
self.slice3 = torch.nn.Sequential()
|
| 64 |
+
self.slice4 = torch.nn.Sequential()
|
| 65 |
+
self.slice5 = torch.nn.Sequential()
|
| 66 |
+
self.N_slices = 5
|
| 67 |
+
for x in range(2):
|
| 68 |
+
self.slice1.add_module(str(x), alexnet_pretrained_features[x])
|
| 69 |
+
for x in range(2, 5):
|
| 70 |
+
self.slice2.add_module(str(x), alexnet_pretrained_features[x])
|
| 71 |
+
for x in range(5, 8):
|
| 72 |
+
self.slice3.add_module(str(x), alexnet_pretrained_features[x])
|
| 73 |
+
for x in range(8, 10):
|
| 74 |
+
self.slice4.add_module(str(x), alexnet_pretrained_features[x])
|
| 75 |
+
for x in range(10, 12):
|
| 76 |
+
self.slice5.add_module(str(x), alexnet_pretrained_features[x])
|
| 77 |
+
if not requires_grad:
|
| 78 |
+
for param in self.parameters():
|
| 79 |
+
param.requires_grad = False
|
| 80 |
+
|
| 81 |
+
def forward(self, X):
|
| 82 |
+
h = self.slice1(X)
|
| 83 |
+
h_relu1 = h
|
| 84 |
+
h = self.slice2(h)
|
| 85 |
+
h_relu2 = h
|
| 86 |
+
h = self.slice3(h)
|
| 87 |
+
h_relu3 = h
|
| 88 |
+
h = self.slice4(h)
|
| 89 |
+
h_relu4 = h
|
| 90 |
+
h = self.slice5(h)
|
| 91 |
+
h_relu5 = h
|
| 92 |
+
alexnet_outputs = namedtuple("AlexnetOutputs", ['relu1', 'relu2', 'relu3', 'relu4', 'relu5'])
|
| 93 |
+
out = alexnet_outputs(h_relu1, h_relu2, h_relu3, h_relu4, h_relu5)
|
| 94 |
+
|
| 95 |
+
return out
|
| 96 |
+
|
| 97 |
+
class vgg16(torch.nn.Module):
|
| 98 |
+
def __init__(self, requires_grad=False, pretrained=True):
|
| 99 |
+
super(vgg16, self).__init__()
|
| 100 |
+
vgg_pretrained_features = tv.vgg16(pretrained=pretrained).features
|
| 101 |
+
self.slice1 = torch.nn.Sequential()
|
| 102 |
+
self.slice2 = torch.nn.Sequential()
|
| 103 |
+
self.slice3 = torch.nn.Sequential()
|
| 104 |
+
self.slice4 = torch.nn.Sequential()
|
| 105 |
+
self.slice5 = torch.nn.Sequential()
|
| 106 |
+
self.N_slices = 5
|
| 107 |
+
for x in range(4):
|
| 108 |
+
self.slice1.add_module(str(x), vgg_pretrained_features[x])
|
| 109 |
+
for x in range(4, 9):
|
| 110 |
+
self.slice2.add_module(str(x), vgg_pretrained_features[x])
|
| 111 |
+
for x in range(9, 16):
|
| 112 |
+
self.slice3.add_module(str(x), vgg_pretrained_features[x])
|
| 113 |
+
for x in range(16, 23):
|
| 114 |
+
self.slice4.add_module(str(x), vgg_pretrained_features[x])
|
| 115 |
+
for x in range(23, 30):
|
| 116 |
+
self.slice5.add_module(str(x), vgg_pretrained_features[x])
|
| 117 |
+
if not requires_grad:
|
| 118 |
+
for param in self.parameters():
|
| 119 |
+
param.requires_grad = False
|
| 120 |
+
|
| 121 |
+
def forward(self, X):
|
| 122 |
+
h = self.slice1(X)
|
| 123 |
+
h_relu1_2 = h
|
| 124 |
+
h = self.slice2(h)
|
| 125 |
+
h_relu2_2 = h
|
| 126 |
+
h = self.slice3(h)
|
| 127 |
+
h_relu3_3 = h
|
| 128 |
+
h = self.slice4(h)
|
| 129 |
+
h_relu4_3 = h
|
| 130 |
+
h = self.slice5(h)
|
| 131 |
+
h_relu5_3 = h
|
| 132 |
+
vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3'])
|
| 133 |
+
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
|
| 134 |
+
|
| 135 |
+
return out
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
class resnet(torch.nn.Module):
|
| 140 |
+
def __init__(self, requires_grad=False, pretrained=True, num=18):
|
| 141 |
+
super(resnet, self).__init__()
|
| 142 |
+
if(num==18):
|
| 143 |
+
self.net = tv.resnet18(pretrained=pretrained)
|
| 144 |
+
elif(num==34):
|
| 145 |
+
self.net = tv.resnet34(pretrained=pretrained)
|
| 146 |
+
elif(num==50):
|
| 147 |
+
self.net = tv.resnet50(pretrained=pretrained)
|
| 148 |
+
elif(num==101):
|
| 149 |
+
self.net = tv.resnet101(pretrained=pretrained)
|
| 150 |
+
elif(num==152):
|
| 151 |
+
self.net = tv.resnet152(pretrained=pretrained)
|
| 152 |
+
self.N_slices = 5
|
| 153 |
+
|
| 154 |
+
self.conv1 = self.net.conv1
|
| 155 |
+
self.bn1 = self.net.bn1
|
| 156 |
+
self.relu = self.net.relu
|
| 157 |
+
self.maxpool = self.net.maxpool
|
| 158 |
+
self.layer1 = self.net.layer1
|
| 159 |
+
self.layer2 = self.net.layer2
|
| 160 |
+
self.layer3 = self.net.layer3
|
| 161 |
+
self.layer4 = self.net.layer4
|
| 162 |
+
|
| 163 |
+
def forward(self, X):
|
| 164 |
+
h = self.conv1(X)
|
| 165 |
+
h = self.bn1(h)
|
| 166 |
+
h = self.relu(h)
|
| 167 |
+
h_relu1 = h
|
| 168 |
+
h = self.maxpool(h)
|
| 169 |
+
h = self.layer1(h)
|
| 170 |
+
h_conv2 = h
|
| 171 |
+
h = self.layer2(h)
|
| 172 |
+
h_conv3 = h
|
| 173 |
+
h = self.layer3(h)
|
| 174 |
+
h_conv4 = h
|
| 175 |
+
h = self.layer4(h)
|
| 176 |
+
h_conv5 = h
|
| 177 |
+
|
| 178 |
+
outputs = namedtuple("Outputs", ['relu1','conv2','conv3','conv4','conv5'])
|
| 179 |
+
out = outputs(h_relu1, h_conv2, h_conv3, h_conv4, h_conv5)
|
| 180 |
+
|
| 181 |
+
return out
|