Create main.py
Browse files
    	
        main.py
    ADDED
    
    | @@ -0,0 +1,124 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
             | 
| 2 | 
            +
            from fastapi import FastAPI, File, UploadFile, Form
         | 
| 3 | 
            +
            from fastapi.responses import StreamingResponse, FileResponse
         | 
| 4 | 
            +
            from fastapi.staticfiles import StaticFiles
         | 
| 5 | 
            +
            import torch
         | 
| 6 | 
            +
            import cv2
         | 
| 7 | 
            +
            import numpy as np
         | 
| 8 | 
            +
            import logging
         | 
| 9 | 
            +
            from io import BytesIO
         | 
| 10 | 
            +
            import tempfile
         | 
| 11 | 
            +
            import os
         | 
| 12 | 
            +
            from insightface.app import FaceAnalysis
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            app = FastAPI()
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            # Load model and necessary components
         | 
| 17 | 
            +
            model = None
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            def load_model():
         | 
| 20 | 
            +
                global model
         | 
| 21 | 
            +
                from vtoonify_model import Model
         | 
| 22 | 
            +
                model = Model(device='cuda' if torch.cuda.is_available() else 'cpu')
         | 
| 23 | 
            +
                model.load_model('cartoon4')
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            # Initialize the InsightFace model for face detection
         | 
| 26 | 
            +
            face_detector = FaceAnalysis(allowed_modules=['detection'])
         | 
| 27 | 
            +
            face_detector.prepare(ctx_id=0 if torch.cuda.is_available() else -1, det_size=(640, 640))
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            # Configure logging
         | 
| 30 | 
            +
            logging.basicConfig(level=logging.INFO)
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            def detect_and_crop_face(image, padding=0.6):
         | 
| 33 | 
            +
                # Get original dimensions
         | 
| 34 | 
            +
                orig_h, orig_w = image.shape[:2]
         | 
| 35 | 
            +
                
         | 
| 36 | 
            +
                # Resize the image for detection
         | 
| 37 | 
            +
                resized_image = cv2.resize(image, (640, 640))
         | 
| 38 | 
            +
                
         | 
| 39 | 
            +
                # Detect faces on the resized image
         | 
| 40 | 
            +
                faces = face_detector.get(resized_image)
         | 
| 41 | 
            +
                
         | 
| 42 | 
            +
                # If faces are detected, sort by x-coordinate and select the leftmost face
         | 
| 43 | 
            +
                if faces:
         | 
| 44 | 
            +
                    faces = sorted(faces, key=lambda face: face.bbox[0])
         | 
| 45 | 
            +
                    face = faces[0]  # Select the leftmost face
         | 
| 46 | 
            +
                    bbox = face.bbox.astype(int)
         | 
| 47 | 
            +
                    
         | 
| 48 | 
            +
                    # Calculate scaling factors
         | 
| 49 | 
            +
                    h_scale = orig_h / 640
         | 
| 50 | 
            +
                    w_scale = orig_w / 640
         | 
| 51 | 
            +
                    
         | 
| 52 | 
            +
                    # Map the bounding box to the original image size
         | 
| 53 | 
            +
                    x1, y1, x2, y2 = bbox
         | 
| 54 | 
            +
                    x1 = int(x1 * w_scale)
         | 
| 55 | 
            +
                    y1 = int(y1 * h_scale)
         | 
| 56 | 
            +
                    x2 = int(x2 * w_scale)
         | 
| 57 | 
            +
                    y2 = int(y2 * h_scale)
         | 
| 58 | 
            +
                    
         | 
| 59 | 
            +
                    # Calculate padding
         | 
| 60 | 
            +
                    width = x2 - x1
         | 
| 61 | 
            +
                    height = y2 - y1
         | 
| 62 | 
            +
                    x1 = max(0, x1 - int(padding * width))
         | 
| 63 | 
            +
                    y1 = max(0, y1 - int(padding * height))
         | 
| 64 | 
            +
                    x2 = min(orig_w, x2 + int(padding * width))
         | 
| 65 | 
            +
                    y2 = min(orig_h, y2 + int(padding * height))
         | 
| 66 | 
            +
                    
         | 
| 67 | 
            +
                    cropped_face = image[y1:y2, x1:x2]
         | 
| 68 | 
            +
                    return cropped_face
         | 
| 69 | 
            +
                
         | 
| 70 | 
            +
                return None
         | 
| 71 | 
            +
             | 
| 72 | 
            +
            @app.post("/upload/")
         | 
| 73 | 
            +
            async def process_image(file: UploadFile = File(...), top: int = Form(...), bottom: int = Form(...), left: int = Form(...), right: int = Form(...)):
         | 
| 74 | 
            +
                global model
         | 
| 75 | 
            +
                if model is None:
         | 
| 76 | 
            +
                    load_model()
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                # Read the uploaded image file
         | 
| 79 | 
            +
                contents = await file.read()
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                # Convert the uploaded image to numpy array
         | 
| 82 | 
            +
                nparr = np.frombuffer(contents, np.uint8)
         | 
| 83 | 
            +
                frame_bgr = cv2.imdecode(nparr, cv2.IMREAD_COLOR)  # Read as BGR format by default
         | 
| 84 | 
            +
                
         | 
| 85 | 
            +
                if frame_bgr is None:
         | 
| 86 | 
            +
                    logging.error("Failed to decode the image.")
         | 
| 87 | 
            +
                    return {"error": "Failed to decode the image. Please ensure the file is a valid image format."}
         | 
| 88 | 
            +
                    logging.info(f"Uploaded image shape: {frame_bgr.shape}")
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                # Detect and crop face
         | 
| 91 | 
            +
                cropped_face = detect_and_crop_face(frame_bgr)
         | 
| 92 | 
            +
                if cropped_face is None:
         | 
| 93 | 
            +
                    return {"error": "No face detected or alignment failed."}
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                # Save the cropped face temporarily
         | 
| 96 | 
            +
                with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
         | 
| 97 | 
            +
                    cv2.imwrite(temp_file.name, cropped_face)
         | 
| 98 | 
            +
                    temp_file_path = temp_file.name
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                try:
         | 
| 101 | 
            +
                    # Process the cropped face using the file path
         | 
| 102 | 
            +
                    aligned_face, instyle, message = model.detect_and_align_image(temp_file_path, top, bottom, left, right)
         | 
| 103 | 
            +
                    if aligned_face is None or instyle is None:
         | 
| 104 | 
            +
                        logging.error("Failed to process the image: No face detected or alignment failed.")
         | 
| 105 | 
            +
                        return {"error": message}
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                    processed_image, message = model.image_toonify(aligned_face, instyle, model.exstyle, style_degree=0.5, style_type='cartoon4')
         | 
| 108 | 
            +
                    if processed_image is None:
         | 
| 109 | 
            +
                        logging.error("Failed to toonify the image.")
         | 
| 110 | 
            +
                        return {"error": message}
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                    # Convert the processed image to RGB before returning
         | 
| 113 | 
            +
                    processed_image_rgb = cv2.cvtColor(processed_image, cv2.COLOR_BGR2RGB)
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                    # Convert processed image to bytes
         | 
| 116 | 
            +
                    _, encoded_image = cv2.imencode('.jpg', processed_image_rgb)
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                    # Return the processed image as a streaming response
         | 
| 119 | 
            +
                    return StreamingResponse(BytesIO(encoded_image.tobytes()), media_type="image/jpeg")
         | 
| 120 | 
            +
                
         | 
| 121 | 
            +
                finally:
         | 
| 122 | 
            +
                    # Clean up the temporary file
         | 
| 123 | 
            +
                    os.remove(temp_file_path)
         | 
| 124 | 
            +
             |