Create vtoonify/model/stylegan/distributed.py
Browse files
vtoonify/model/stylegan/distributed.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import pickle
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from torch import distributed as dist
|
| 6 |
+
from torch.utils.data.sampler import Sampler
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def get_rank():
|
| 10 |
+
if not dist.is_available():
|
| 11 |
+
return 0
|
| 12 |
+
|
| 13 |
+
if not dist.is_initialized():
|
| 14 |
+
return 0
|
| 15 |
+
|
| 16 |
+
return dist.get_rank()
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def synchronize():
|
| 20 |
+
if not dist.is_available():
|
| 21 |
+
return
|
| 22 |
+
|
| 23 |
+
if not dist.is_initialized():
|
| 24 |
+
return
|
| 25 |
+
|
| 26 |
+
world_size = dist.get_world_size()
|
| 27 |
+
|
| 28 |
+
if world_size == 1:
|
| 29 |
+
return
|
| 30 |
+
|
| 31 |
+
dist.barrier()
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def get_world_size():
|
| 35 |
+
if not dist.is_available():
|
| 36 |
+
return 1
|
| 37 |
+
|
| 38 |
+
if not dist.is_initialized():
|
| 39 |
+
return 1
|
| 40 |
+
|
| 41 |
+
return dist.get_world_size()
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def reduce_sum(tensor):
|
| 45 |
+
if not dist.is_available():
|
| 46 |
+
return tensor
|
| 47 |
+
|
| 48 |
+
if not dist.is_initialized():
|
| 49 |
+
return tensor
|
| 50 |
+
|
| 51 |
+
tensor = tensor.clone()
|
| 52 |
+
dist.all_reduce(tensor, op=dist.ReduceOp.SUM)
|
| 53 |
+
|
| 54 |
+
return tensor
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def gather_grad(params):
|
| 58 |
+
world_size = get_world_size()
|
| 59 |
+
|
| 60 |
+
if world_size == 1:
|
| 61 |
+
return
|
| 62 |
+
|
| 63 |
+
for param in params:
|
| 64 |
+
if param.grad is not None:
|
| 65 |
+
dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM)
|
| 66 |
+
param.grad.data.div_(world_size)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def all_gather(data):
|
| 70 |
+
world_size = get_world_size()
|
| 71 |
+
|
| 72 |
+
if world_size == 1:
|
| 73 |
+
return [data]
|
| 74 |
+
|
| 75 |
+
buffer = pickle.dumps(data)
|
| 76 |
+
storage = torch.ByteStorage.from_buffer(buffer)
|
| 77 |
+
tensor = torch.ByteTensor(storage).to('cuda')
|
| 78 |
+
|
| 79 |
+
local_size = torch.IntTensor([tensor.numel()]).to('cuda')
|
| 80 |
+
size_list = [torch.IntTensor([0]).to('cuda') for _ in range(world_size)]
|
| 81 |
+
dist.all_gather(size_list, local_size)
|
| 82 |
+
size_list = [int(size.item()) for size in size_list]
|
| 83 |
+
max_size = max(size_list)
|
| 84 |
+
|
| 85 |
+
tensor_list = []
|
| 86 |
+
for _ in size_list:
|
| 87 |
+
tensor_list.append(torch.ByteTensor(size=(max_size,)).to('cuda'))
|
| 88 |
+
|
| 89 |
+
if local_size != max_size:
|
| 90 |
+
padding = torch.ByteTensor(size=(max_size - local_size,)).to('cuda')
|
| 91 |
+
tensor = torch.cat((tensor, padding), 0)
|
| 92 |
+
|
| 93 |
+
dist.all_gather(tensor_list, tensor)
|
| 94 |
+
|
| 95 |
+
data_list = []
|
| 96 |
+
|
| 97 |
+
for size, tensor in zip(size_list, tensor_list):
|
| 98 |
+
buffer = tensor.cpu().numpy().tobytes()[:size]
|
| 99 |
+
data_list.append(pickle.loads(buffer))
|
| 100 |
+
|
| 101 |
+
return data_list
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def reduce_loss_dict(loss_dict):
|
| 105 |
+
world_size = get_world_size()
|
| 106 |
+
|
| 107 |
+
if world_size < 2:
|
| 108 |
+
return loss_dict
|
| 109 |
+
|
| 110 |
+
with torch.no_grad():
|
| 111 |
+
keys = []
|
| 112 |
+
losses = []
|
| 113 |
+
|
| 114 |
+
for k in sorted(loss_dict.keys()):
|
| 115 |
+
keys.append(k)
|
| 116 |
+
losses.append(loss_dict[k])
|
| 117 |
+
|
| 118 |
+
losses = torch.stack(losses, 0)
|
| 119 |
+
dist.reduce(losses, dst=0)
|
| 120 |
+
|
| 121 |
+
if dist.get_rank() == 0:
|
| 122 |
+
losses /= world_size
|
| 123 |
+
|
| 124 |
+
reduced_losses = {k: v for k, v in zip(keys, losses)}
|
| 125 |
+
|
| 126 |
+
return reduced_losses
|