Create vtoonify/model/raft/core/update.py
Browse files
vtoonify/model/raft/core/update.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class FlowHead(nn.Module):
|
| 7 |
+
def __init__(self, input_dim=128, hidden_dim=256):
|
| 8 |
+
super(FlowHead, self).__init__()
|
| 9 |
+
self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1)
|
| 10 |
+
self.conv2 = nn.Conv2d(hidden_dim, 2, 3, padding=1)
|
| 11 |
+
self.relu = nn.ReLU(inplace=True)
|
| 12 |
+
|
| 13 |
+
def forward(self, x):
|
| 14 |
+
return self.conv2(self.relu(self.conv1(x)))
|
| 15 |
+
|
| 16 |
+
class ConvGRU(nn.Module):
|
| 17 |
+
def __init__(self, hidden_dim=128, input_dim=192+128):
|
| 18 |
+
super(ConvGRU, self).__init__()
|
| 19 |
+
self.convz = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
|
| 20 |
+
self.convr = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
|
| 21 |
+
self.convq = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
|
| 22 |
+
|
| 23 |
+
def forward(self, h, x):
|
| 24 |
+
hx = torch.cat([h, x], dim=1)
|
| 25 |
+
|
| 26 |
+
z = torch.sigmoid(self.convz(hx))
|
| 27 |
+
r = torch.sigmoid(self.convr(hx))
|
| 28 |
+
q = torch.tanh(self.convq(torch.cat([r*h, x], dim=1)))
|
| 29 |
+
|
| 30 |
+
h = (1-z) * h + z * q
|
| 31 |
+
return h
|
| 32 |
+
|
| 33 |
+
class SepConvGRU(nn.Module):
|
| 34 |
+
def __init__(self, hidden_dim=128, input_dim=192+128):
|
| 35 |
+
super(SepConvGRU, self).__init__()
|
| 36 |
+
self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
|
| 37 |
+
self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
|
| 38 |
+
self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
|
| 39 |
+
|
| 40 |
+
self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
|
| 41 |
+
self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
|
| 42 |
+
self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def forward(self, h, x):
|
| 46 |
+
# horizontal
|
| 47 |
+
hx = torch.cat([h, x], dim=1)
|
| 48 |
+
z = torch.sigmoid(self.convz1(hx))
|
| 49 |
+
r = torch.sigmoid(self.convr1(hx))
|
| 50 |
+
q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1)))
|
| 51 |
+
h = (1-z) * h + z * q
|
| 52 |
+
|
| 53 |
+
# vertical
|
| 54 |
+
hx = torch.cat([h, x], dim=1)
|
| 55 |
+
z = torch.sigmoid(self.convz2(hx))
|
| 56 |
+
r = torch.sigmoid(self.convr2(hx))
|
| 57 |
+
q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1)))
|
| 58 |
+
h = (1-z) * h + z * q
|
| 59 |
+
|
| 60 |
+
return h
|
| 61 |
+
|
| 62 |
+
class SmallMotionEncoder(nn.Module):
|
| 63 |
+
def __init__(self, args):
|
| 64 |
+
super(SmallMotionEncoder, self).__init__()
|
| 65 |
+
cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2
|
| 66 |
+
self.convc1 = nn.Conv2d(cor_planes, 96, 1, padding=0)
|
| 67 |
+
self.convf1 = nn.Conv2d(2, 64, 7, padding=3)
|
| 68 |
+
self.convf2 = nn.Conv2d(64, 32, 3, padding=1)
|
| 69 |
+
self.conv = nn.Conv2d(128, 80, 3, padding=1)
|
| 70 |
+
|
| 71 |
+
def forward(self, flow, corr):
|
| 72 |
+
cor = F.relu(self.convc1(corr))
|
| 73 |
+
flo = F.relu(self.convf1(flow))
|
| 74 |
+
flo = F.relu(self.convf2(flo))
|
| 75 |
+
cor_flo = torch.cat([cor, flo], dim=1)
|
| 76 |
+
out = F.relu(self.conv(cor_flo))
|
| 77 |
+
return torch.cat([out, flow], dim=1)
|
| 78 |
+
|
| 79 |
+
class BasicMotionEncoder(nn.Module):
|
| 80 |
+
def __init__(self, args):
|
| 81 |
+
super(BasicMotionEncoder, self).__init__()
|
| 82 |
+
cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2
|
| 83 |
+
self.convc1 = nn.Conv2d(cor_planes, 256, 1, padding=0)
|
| 84 |
+
self.convc2 = nn.Conv2d(256, 192, 3, padding=1)
|
| 85 |
+
self.convf1 = nn.Conv2d(2, 128, 7, padding=3)
|
| 86 |
+
self.convf2 = nn.Conv2d(128, 64, 3, padding=1)
|
| 87 |
+
self.conv = nn.Conv2d(64+192, 128-2, 3, padding=1)
|
| 88 |
+
|
| 89 |
+
def forward(self, flow, corr):
|
| 90 |
+
cor = F.relu(self.convc1(corr))
|
| 91 |
+
cor = F.relu(self.convc2(cor))
|
| 92 |
+
flo = F.relu(self.convf1(flow))
|
| 93 |
+
flo = F.relu(self.convf2(flo))
|
| 94 |
+
|
| 95 |
+
cor_flo = torch.cat([cor, flo], dim=1)
|
| 96 |
+
out = F.relu(self.conv(cor_flo))
|
| 97 |
+
return torch.cat([out, flow], dim=1)
|
| 98 |
+
|
| 99 |
+
class SmallUpdateBlock(nn.Module):
|
| 100 |
+
def __init__(self, args, hidden_dim=96):
|
| 101 |
+
super(SmallUpdateBlock, self).__init__()
|
| 102 |
+
self.encoder = SmallMotionEncoder(args)
|
| 103 |
+
self.gru = ConvGRU(hidden_dim=hidden_dim, input_dim=82+64)
|
| 104 |
+
self.flow_head = FlowHead(hidden_dim, hidden_dim=128)
|
| 105 |
+
|
| 106 |
+
def forward(self, net, inp, corr, flow):
|
| 107 |
+
motion_features = self.encoder(flow, corr)
|
| 108 |
+
inp = torch.cat([inp, motion_features], dim=1)
|
| 109 |
+
net = self.gru(net, inp)
|
| 110 |
+
delta_flow = self.flow_head(net)
|
| 111 |
+
|
| 112 |
+
return net, None, delta_flow
|
| 113 |
+
|
| 114 |
+
class BasicUpdateBlock(nn.Module):
|
| 115 |
+
def __init__(self, args, hidden_dim=128, input_dim=128):
|
| 116 |
+
super(BasicUpdateBlock, self).__init__()
|
| 117 |
+
self.args = args
|
| 118 |
+
self.encoder = BasicMotionEncoder(args)
|
| 119 |
+
self.gru = SepConvGRU(hidden_dim=hidden_dim, input_dim=128+hidden_dim)
|
| 120 |
+
self.flow_head = FlowHead(hidden_dim, hidden_dim=256)
|
| 121 |
+
|
| 122 |
+
self.mask = nn.Sequential(
|
| 123 |
+
nn.Conv2d(128, 256, 3, padding=1),
|
| 124 |
+
nn.ReLU(inplace=True),
|
| 125 |
+
nn.Conv2d(256, 64*9, 1, padding=0))
|
| 126 |
+
|
| 127 |
+
def forward(self, net, inp, corr, flow, upsample=True):
|
| 128 |
+
motion_features = self.encoder(flow, corr)
|
| 129 |
+
inp = torch.cat([inp, motion_features], dim=1)
|
| 130 |
+
|
| 131 |
+
net = self.gru(net, inp)
|
| 132 |
+
delta_flow = self.flow_head(net)
|
| 133 |
+
|
| 134 |
+
# scale mask to balence gradients
|
| 135 |
+
mask = .25 * self.mask(net)
|
| 136 |
+
return net, mask, delta_flow
|
| 137 |
+
|
| 138 |
+
|