import gradio as gr import io from PIL import Image import torch from clip_interrogator import Config, Interrogator config = Config() config.device = 'cuda' if torch.cuda.is_available() else 'cpu' config.blip_offload = False if torch.cuda.is_available() else True config.chunk_size = 2048 config.flavor_intermediate_count = 512 config.blip_num_beams = 64 ci = Interrogator(config) def inference(input_images, mode, best_max_flavors): prompt_results = [] for image_bytes in input_images: image = Image.open(io.BytesIO(image_bytes)).convert('RGB') if mode == 'best': prompt_result = ci.interrogate(image, max_flavors=int(best_max_flavors)) elif mode == 'classic': prompt_result = ci.interrogate_classic(image) else: prompt_result = ci.interrogate_fast(image) prompt_results.append(prompt_result) return "\n\n".join(prompt_results) title = """

CLIP Interrogator 2.1

Want to figure out what a good prompt might be to create new images like an existing one?
The CLIP Interrogator is here to get you answers!
This version is specialized for producing nice prompts for use with Stable Diffusion 2.0 using the ViT-H-14 OpenCLIP model!

""" article = """

Server busy? You can also run on Google Colab

Has this been helpful to you? Follow Pharma on twitter @pharmapsychotic and check out more tools at his Ai generative art tools list

""" css = ''' #col-container {width: 80%; margin-left: auto; margin-right: auto;} a {text-decoration-line: underline; font-weight: 600;} ''' with gr.Blocks(css=css) as block: with gr.Column(elem_id="col-container"): gr.HTML(title) input_image = gr.Files(label="Inputs", file_count="multiple", type='binary', elem_id='inputs') with gr.Row(): mode_input = gr.Radio(['best', 'classic', 'fast'], label='Select mode', value='best') flavor_input = gr.Slider(minimum=2, maximum=24, step=2, value=4, label='Best mode max flavors') submit_btn = gr.Button("Submit") output_text = gr.Textbox(label="Output Prompts", lines=10, elem_id="output_text") with gr.Group(elem_id="share-btn-container"): gr.HTML(article) submit_btn.click(fn=inference, inputs=[input_image, mode_input, flavor_input], outputs=[output_text], api_name="clipi2") block.queue().launch()