Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, Form
|
2 |
+
from fastapi.responses import JSONResponse
|
3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
4 |
+
from PIL import Image
|
5 |
+
import io
|
6 |
+
import torch
|
7 |
+
from clip_interrogator import Config, Interrogator
|
8 |
+
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
# Allow CORS for all origins (adjust as needed for production)
|
12 |
+
app.add_middleware(
|
13 |
+
CORSMiddleware,
|
14 |
+
allow_origins=["*"],
|
15 |
+
allow_credentials=True,
|
16 |
+
allow_methods=["*"],
|
17 |
+
allow_headers=["*"],
|
18 |
+
)
|
19 |
+
|
20 |
+
# Setup the CLIP Interrogator
|
21 |
+
config = Config()
|
22 |
+
config.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
23 |
+
config.blip_offload = False if torch.cuda.is_available() else True
|
24 |
+
config.chunk_size = 2048
|
25 |
+
config.flavor_intermediate_count = 512
|
26 |
+
config.blip_num_beams = 64
|
27 |
+
|
28 |
+
ci = Interrogator(config)
|
29 |
+
|
30 |
+
@app.post("/inference/")
|
31 |
+
async def interrogate_images(file: UploadFile = File(...), mode: str = Form(...), best_max_flavors: int = Form(...)):
|
32 |
+
try:
|
33 |
+
contents = await file.read()
|
34 |
+
image = Image.open(io.BytesIO(contents)).convert('RGB')
|
35 |
+
|
36 |
+
if mode == 'best':
|
37 |
+
prompt_result = ci.interrogate(image, max_flavors=int(best_max_flavors))
|
38 |
+
elif mode == 'classic':
|
39 |
+
prompt_result = ci.interrogate_classic(image)
|
40 |
+
else:
|
41 |
+
prompt_result = ci.interrogate_fast(image)
|
42 |
+
|
43 |
+
return JSONResponse(content={"prompt_results": [prompt_result]})
|
44 |
+
except Exception as e:
|
45 |
+
return JSONResponse(content={"error": str(e)}, status_code=500)
|
46 |
+
|