from fastapi import FastAPI, File, UploadFile from fastapi.responses import StreamingResponse import numpy as np import cv2 import io from PIL import Image # Load the models print("Loading models...") net = cv2.dnn.readNetFromCaffe('colorization_deploy_v2.prototxt', 'colorization_release_v2.caffemodel') pts = np.load('pts_in_hull.npy') class8 = net.getLayerId("class8_ab") conv8 = net.getLayerId("conv8_313_rh") pts = pts.transpose().reshape(2, 313, 1, 1) net.getLayer(class8).blobs = [pts.astype("float32")] net.getLayer(conv8).blobs = [np.full([1, 313], 2.606, dtype='float32')] # Initialize FastAPI app app = FastAPI() def read_image(file): # Open the image with Pillow pil_image = Image.open(file) # Convert the Pillow image to a NumPy array image_array = np.array(pil_image) return image_array def colorize_image(image): # Convert the PIL image to OpenCV format image = np.array(image) image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) scaled = image.astype("float32") / 255.0 lab = cv2.cvtColor(scaled, cv2.COLOR_BGR2LAB) resized = cv2.resize(lab, (224, 224)) L = cv2.split(resized)[0] L -= 50 net.setInput(cv2.dnn.blobFromImage(L)) ab = net.forward()[0, :, :, :].transpose((1, 2, 0)) ab = cv2.resize(ab, (image.shape[1], image.shape[0])) L = cv2.split(lab)[0] colorized = np.concatenate((L[:, :, np.newaxis], ab), axis=2) colorized = cv2.cvtColor(colorized, cv2.COLOR_LAB2RGB) colorized = np.clip(colorized, 0, 1) colorized = (255 * colorized).astype("uint8") return colorized @app.post("/upload/") async def upload(file: UploadFile = File(...)): # Read the image using Pillow and convert to NumPy array image_array = read_image(file.file) # Process the image colorized_image = colorize_image(image_array) # Convert the colorized image to bytes pil_image = Image.fromarray(colorized_image) buf = io.BytesIO() pil_image.save(buf, format="PNG") buf.seek(0) return StreamingResponse(buf, media_type="image/png")