import numpy as np import cv2 import gradio as gr print("loading models.....") net = cv2.dnn.readNetFromCaffe('colorization_deploy_v2.prototxt','colorization_release_v2.caffemodel') pts = np.load('pts_in_hull.npy') class8 = net.getLayerId("class8_ab") conv8 = net.getLayerId("conv8_313_rh") pts = pts.transpose().reshape(2,313,1,1) net.getLayer(class8).blobs = [pts.astype("float32")] net.getLayer(conv8).blobs = [np.full([1,313],2.606,dtype='float32')] def colorize_image(image): # Convert the PIL image to OpenCV format image = np.array(image) image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) scaled = image.astype("float32")/255.0 lab = cv2.cvtColor(scaled, cv2.COLOR_BGR2LAB) resized = cv2.resize(lab, (224, 224)) L = cv2.split(resized)[0] L -= 50 net.setInput(cv2.dnn.blobFromImage(L)) ab = net.forward()[0, :, :, :].transpose((1, 2, 0)) ab = cv2.resize(ab, (image.shape[1], image.shape[0])) L = cv2.split(lab)[0] colorized = np.concatenate((L[:, :, np.newaxis], ab), axis=2) colorized = cv2.cvtColor(colorized, cv2.COLOR_LAB2RGB) colorized = np.clip(colorized, 0, 1) colorized = (255 * colorized).astype("uint8") return colorized demo = gr.Interface( colorize_image, gr.Image(type="pil",label='Upload a black and white image'), "image", title="Image Colorization", examples = ["Landscape.jpg","nnl.jpg","bw.jpg"] ) if __name__ == "__main__": demo.launch()