|
import numpy as np |
|
import cv2 |
|
from cv2 import dnn |
|
|
|
print("loading models.....") |
|
net = cv2.dnn.readNetFromCaffe('colorization_deploy_v2.prototxt','colorization_release_v2.caffemodel') |
|
pts = np.load('pts_in_hull.npy') |
|
|
|
|
|
class8 = net.getLayerId("class8_ab") |
|
conv8 = net.getLayerId("conv8_313_rh") |
|
pts = pts.transpose().reshape(2,313,1,1) |
|
|
|
net.getLayer(class8).blobs = [pts.astype("float32")] |
|
net.getLayer(conv8).blobs = [np.full([1,313],2.606,dtype='float32')] |
|
|
|
|
|
image = cv2.imread('nnl.jpg') |
|
scaled = image.astype("float32")/255.0 |
|
lab = cv2.cvtColor(scaled,cv2.COLOR_BGR2LAB) |
|
|
|
|
|
resized = cv2.resize(lab,(224,224)) |
|
L = cv2.split(resized)[0] |
|
L -= 50 |
|
|
|
|
|
net.setInput(cv2.dnn.blobFromImage(L)) |
|
ab = net.forward()[0, :, :, :].transpose((1,2,0)) |
|
|
|
ab = cv2.resize(ab, (image.shape[1],image.shape[0])) |
|
|
|
L = cv2.split(lab)[0] |
|
colorized = np.concatenate((L[:,:,np.newaxis], ab), axis=2) |
|
|
|
colorized = cv2.cvtColor(colorized,cv2.COLOR_LAB2BGR) |
|
colorized = np.clip(colorized,0,1) |
|
|
|
colorized = (255 * colorized).astype("uint8") |
|
|
|
cv2.imshow("Original",image) |
|
cv2.imshow("Colorized",colorized) |
|
cv2.waitKey(0) |