Spaces:
Running
on
Zero
Running
on
Zero
add parser_model_ner_gemma_v0 based on gemma 3 370m it
Browse files
app.py
CHANGED
@@ -28,6 +28,10 @@ cancel_event = threading.Event()
|
|
28 |
MODELS = {
|
29 |
# … your existing entries …
|
30 |
"Qwen2.5-Taiwan-1.5B-Instruct": {"repo_id": "benchang1110/Qwen2.5-Taiwan-1.5B-Instruct", "description": "Qwen2.5-Taiwan-1.5B-Instruct"},
|
|
|
|
|
|
|
|
|
31 |
"Gemma-3-Taiwan-270M-it":{
|
32 |
"repo_id":"lianghsun/Gemma-3-Taiwan-270M-it",
|
33 |
"description": "google/gemma-3-270m-it fintuned on Taiwan Chinese dataset"
|
|
|
28 |
MODELS = {
|
29 |
# … your existing entries …
|
30 |
"Qwen2.5-Taiwan-1.5B-Instruct": {"repo_id": "benchang1110/Qwen2.5-Taiwan-1.5B-Instruct", "description": "Qwen2.5-Taiwan-1.5B-Instruct"},
|
31 |
+
"parser_model_ner_gemma_v0.1": {
|
32 |
+
"repo_id": "myfi/parser_model_ner_gemma_v0.1",
|
33 |
+
"description": "A lightweight named‑entity‑like (NER) parser fine‑tuned from Google’s **Gemma‑3‑270M** model. The base Gemma‑3‑270M is a 270 M‑parameter, hyper‑efficient LLM designed for on‑device inference, supporting >140 languages, a 128 k‑token context window, and instruction‑following capabilities [2][7]. This variant is further trained on standard NER corpora (e.g., CoNLL‑2003, OntoNotes) to extract PERSON, ORG, LOC, and MISC entities with high precision while keeping the memory footprint low (≈240 MB VRAM in BF16 quantized form) [1]. It is released under the Apache‑2.0 license and can be used for fast, cost‑effective entity extraction in low‑resource environments."
|
34 |
+
},
|
35 |
"Gemma-3-Taiwan-270M-it":{
|
36 |
"repo_id":"lianghsun/Gemma-3-Taiwan-270M-it",
|
37 |
"description": "google/gemma-3-270m-it fintuned on Taiwan Chinese dataset"
|