Spaces:
Running
Running
import time | |
import logging | |
import gradio as gr | |
import cv2 | |
import os | |
from pathlib import Path | |
from huggingface_hub import hf_hub_download | |
from llama_cpp import Llama | |
from llama_cpp.llama_chat_format import Llava15ChatHandler | |
import base64 | |
import gc | |
import io | |
from contextlib import redirect_stdout, redirect_stderr | |
import sys, llama_cpp | |
# ---------------------------------------- | |
# Model configurations: per-size prefixes and repos | |
MODELS = { | |
"256M": { | |
"model_repo": "mradermacher/SmolVLM2-256M-Video-Instruct-GGUF", | |
"clip_repo": "ggml-org/SmolVLM2-256M-Video-Instruct-GGUF", | |
"model_prefix": "SmolVLM2-256M-Video-Instruct", | |
"clip_prefix": "mmproj-SmolVLM2-256M-Video-Instruct", | |
"model_variants": ["f16", "Q8_0", "Q2_K", "Q4_K_M"], | |
"clip_variants": ["Q8_0", "f16"], | |
}, | |
"500M": { | |
"model_repo": "mradermacher/SmolVLM2-500M-Video-Instruct-GGUF", | |
"clip_repo": "ggml-org/SmolVLM2-500M-Video-Instruct-GGUF", | |
"model_prefix": "SmolVLM2-500M-Video-Instruct", | |
"clip_prefix": "mmproj-SmolVLM2-500M-Video-Instruct", | |
"model_variants": ["f16", "Q4_K_M", "Q8_0", "Q2_K"], | |
"clip_variants": ["Q8_0", "f16"], | |
}, | |
"2.2B": { | |
"model_repo": "mradermacher/SmolVLM2-2.2B-Instruct-GGUF", | |
"clip_repo": "ggml-org/SmolVLM2-2.2B-Instruct-GGUF", | |
"model_prefix": "SmolVLM2-2.2B-Instruct", | |
"clip_prefix": "mmproj-SmolVLM2-2.2B-Instruct", | |
"model_variants": ["f16", "Q4_K_M", "Q8_0", "Q2_K"], | |
"clip_variants": ["Q8_0", "f16"], | |
}, | |
} | |
# ---------------------------------------- | |
# Cache for loaded model instance | |
model_cache = { | |
'size': None, | |
'model_file': None, | |
'clip_file': None, | |
'verbose': None, | |
'n_threads': None, | |
'llm': None | |
} | |
# Helper to download weights and return their cache paths | |
def ensure_weights(cfg, model_file, clip_file): | |
# Download model and clip into HF cache (writable, e.g. /tmp/.cache) | |
model_path = hf_hub_download(repo_id=cfg['model_repo'], filename=model_file) | |
clip_path = hf_hub_download(repo_id=cfg['clip_repo'], filename=clip_file) | |
return model_path, clip_path | |
# Custom chat handler | |
class SmolVLM2ChatHandler(Llava15ChatHandler): | |
CHAT_FORMAT = ( | |
"<|im_start|>" | |
"{% for message in messages %}" | |
"{{ message['role'] | capitalize }}" | |
"{% if message['role']=='user' and message['content'][0]['type']=='image_url' %}:" | |
"{% else %}: " | |
"{% endif %}" | |
"{% for content in message['content'] %}" | |
"{% if content['type']=='text' %}{{ content['text'] }}" | |
"{% elif content['type']=='image_url' %}" | |
"{% if content['image_url'] is string %}" | |
"{{ content['image_url'] }}\n" | |
"{% elif content['image_url'] is mapping %}" | |
"{{ content['image_url']['url'] }}\n" | |
"{% endif %}" | |
"{% endif %}" | |
"{% endfor %}" | |
"<end_of_utterance>\n" | |
"{% endfor %}" | |
"{% if add_generation_prompt %}Assistant:{% endif %}" | |
) | |
# Load and cache LLM (only on dropdown or verbose or thread change) | |
def update_llm(size, model_file, clip_file, verbose_mode, n_threads): | |
# Only reload if any of parameters changed | |
if (model_cache['size'], model_cache['model_file'], model_cache['clip_file'], model_cache['verbose'], model_cache['n_threads']) != (size, model_file, clip_file, verbose_mode, n_threads): | |
mf, cf = ensure_weights(MODELS[size], model_file, clip_file) | |
handler = SmolVLM2ChatHandler(clip_model_path=cf, verbose=verbose_mode) | |
llm = Llama( | |
model_path=mf, | |
chat_handler=handler, | |
n_ctx=512, | |
verbose=verbose_mode, | |
n_threads=n_threads, | |
use_mlock=True, | |
) | |
model_cache.update({'size': size, 'model_file': mf, 'clip_file': cf, 'verbose': verbose_mode, 'n_threads': n_threads, 'llm': llm}) | |
return None | |
# Build weight filename lists | |
def get_weight_files(size): | |
cfg = MODELS[size] | |
model_files = [f"{cfg['model_prefix']}.{v}.gguf" for v in cfg['model_variants']] | |
clip_files = [f"{cfg['clip_prefix']}-{v}.gguf" for v in cfg['clip_variants']] | |
return model_files, clip_files | |
# Caption using cached llm with real-time debug logs | |
def caption_frame(frame, size, model_file, clip_file, interval_ms, sys_prompt, usr_prompt, reset_clip, verbose_mode): | |
debug_msgs = [] | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Verbose mode: {verbose_mode}") | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] llama_cpp version: {llama_cpp.__version__}") | |
debug_msgs.append(f"[{timestamp}] Python version: {sys.version.split()[0]}") | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Received frame shape: {frame.shape}") | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Using model weights: {model_file}") | |
debug_msgs.append(f"[{timestamp}] Using CLIP weights: {clip_file}") | |
t_resize = time.time() | |
img = cv2.resize(frame.copy(), (384, 384)) | |
elapsed = (time.time() - t_resize) * 1000 | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Resized to 384x384 in {elapsed:.1f} ms") | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Sleeping for {interval_ms} ms") | |
time.sleep(interval_ms / 1000) | |
t_enc = time.time() | |
params = [int(cv2.IMWRITE_JPEG_QUALITY), 75] | |
success, jpeg = cv2.imencode('.jpg', img, params) | |
elapsed = (time.time() - t_enc) * 1000 | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] JPEG encode: success={success}, bytes={len(jpeg)} in {elapsed:.1f} ms") | |
uri = 'data:image/jpeg;base64,' + base64.b64encode(jpeg.tobytes()).decode() | |
messages = [ | |
{"role": "system", "content": sys_prompt}, | |
{"role": "user", "content": [ | |
{"type": "image_url", "image_url": uri}, | |
{"type": "text", "text": usr_prompt} | |
]} | |
] | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Sending prompt of length {len(usr_prompt)} to LLM") | |
if reset_clip: | |
model_cache['llm'].chat_handler = SmolVLM2ChatHandler(clip_model_path=clip_file, verbose=verbose_mode) | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Reinitialized chat handler") | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] CPU count = {os.cpu_count()}") | |
if model_cache.get('n_threads') is not None: | |
debug_msgs.append(f"[{timestamp}] llama_cpp n_threads = {model_cache['n_threads']}") | |
t_start = time.time() | |
buf = io.StringIO() | |
with redirect_stdout(buf), redirect_stderr(buf): | |
resp = model_cache['llm'].create_chat_completion( | |
messages=messages, | |
max_tokens=128, | |
temperature=0.1, | |
stop=["<end_of_utterance>"] | |
) | |
for line in buf.getvalue().splitlines(): | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] {line}") | |
elapsed = (time.time() - t_start) * 1000 | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] LLM response in {elapsed:.1f} ms") | |
content = resp.get('choices', [{}])[0].get('message', {}).get('content', '').strip() | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Caption length: {len(content)} chars") | |
gc.collect() | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Garbage collected") | |
return content, "\n".join(debug_msgs) | |
# Gradio UI | |
def main(): | |
logging.basicConfig(level=logging.INFO) | |
default = '500M' | |
default_verbose = True | |
default_threads = 2 | |
mf, cf = get_weight_files(default) | |
with gr.Blocks() as demo: | |
gr.Markdown("## 🎥 Real-Time Camera Captioning with Debug Logs") | |
with gr.Row(): | |
size_dd = gr.Dropdown(list(MODELS.keys()), value=default, label='Model Size') | |
model_dd = gr.Dropdown(mf, value=mf[0], label='Decoder Weights') | |
clip_dd = gr.Dropdown(cf, value=cf[0], label='CLIP Weights') | |
verbose_cb= gr.Checkbox(value=default_verbose, label='Verbose Mode') | |
thread_dd = gr.Slider(minimum=1, maximum=os.cpu_count(), step=1, value=default_threads, label='CPU Threads (n_threads)') | |
def on_size_change(sz, verbose, n_threads): | |
mlist, clist = get_weight_files(sz) | |
update_llm(sz, mlist[0], clist[0], verbose, n_threads) | |
return gr.update(choices=mlist, value=mlist[0]), gr.update(choices=clist, value=clist[0]) | |
size_dd.change( | |
fn=on_size_change, | |
inputs=[size_dd, verbose_cb, thread_dd], | |
outputs=[model_dd, clip_dd] | |
) | |
model_dd.change( | |
fn=lambda sz, mf, cf, verbose, n_threads: update_llm(sz, mf, cf, verbose, n_threads), | |
inputs=[size_dd, model_dd, clip_dd, verbose_cb, thread_dd], | |
outputs=[] | |
) | |
clip_dd.change( | |
fn=lambda sz, mf, cf, verbose, n_threads: update_llm(sz, mf, cf, verbose, n_threads), | |
inputs=[size_dd, model_dd, clip_dd, verbose_cb, thread_dd], | |
outputs=[] | |
) | |
verbose_cb.change( | |
fn=lambda sz, mf, cf, verbose, n_threads: update_llm(sz, mf, cf, verbose, n_threads), | |
inputs=[size_dd, model_dd, clip_dd, verbose_cb, thread_dd], | |
outputs=[] | |
) | |
thread_dd.change( | |
fn=lambda sz, mf, cf, verbose, n_threads: update_llm(sz, mf, cf, verbose, n_threads), | |
inputs=[size_dd, model_dd, clip_dd, verbose_cb, thread_dd], | |
outputs=[] | |
) | |
# Initial load | |
update_llm(default, mf[0], cf[0], default_verbose, default_threads) | |
interval = gr.Slider(100, 20000, step=100, value=3000, label='Interval (ms)') | |
sys_p = gr.Textbox(lines=2, value="Focus on key dramatic action…", label='System Prompt') | |
usr_p = gr.Textbox(lines=1, value="Analyze the image and determine if there is any person lying on the floor. Respond with exactly YES or NO.", label='User Prompt') | |
reset_clip = gr.Checkbox(value=False, label="Reset CLIP handler each frame") | |
cam = gr.Image(sources=['webcam'], streaming=True, label='Webcam Feed') | |
cap = gr.Textbox(interactive=False, label='Caption') | |
log_box = gr.Textbox(lines=8, interactive=False, label='Debug Log') | |
cam.stream( | |
fn=caption_frame, | |
inputs=[cam, size_dd, model_dd, clip_dd, interval, sys_p, usr_p, reset_clip, verbose_cb], | |
outputs=[cap, log_box], | |
time_limit=600, | |
) | |
demo.launch() | |
if __name__ == '__main__': | |
main() | |