import torch import numpy as np from transformers import pipeline, SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan from datasets import load_dataset import gradio as gr # Configuración del dispositivo (GPU si está disponible) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Pipeline de traducción automática de voz pipe = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if torch.cuda.is_available() else -1) def translate(audio): outputs = pipe(audio, generate_kwargs={"task": "translate", "max_new_tokens": 256}) return outputs["text"] # Modelos para síntesis de voz processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") model.to(device) vocoder.to(device) # Embedding del hablante embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[6000]["xvector"]).unsqueeze(0) def synthesise(text): inputs = processor(text=text, return_tensors="pt") speech = model.generate_speech( inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder ) return speech.cpu() # Conversión final target_dtype = np.int16 max_range = np.iinfo(target_dtype).max def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16) return 16000, synthesised_speech # Interfaz Gradio demo = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(sources="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), ) demo.launch(debug=True)