Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
from transformers import pipeline, SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan | |
from datasets import load_dataset | |
import gradio as gr | |
# Configuración del dispositivo (GPU si está disponible) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Pipeline de traducción automática de voz | |
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if torch.cuda.is_available() else -1) | |
def translate(audio): | |
outputs = pipe(audio, generate_kwargs={"task": "translate", "max_new_tokens": 256}) | |
return outputs["text"] | |
# Modelos para síntesis de voz | |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") | |
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
model.to(device) | |
vocoder.to(device) | |
# Embedding del hablante | |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
speaker_embeddings = torch.tensor(embeddings_dataset[6000]["xvector"]).unsqueeze(0) | |
def synthesise(text): | |
inputs = processor(text=text, return_tensors="pt") | |
speech = model.generate_speech( | |
inputs["input_ids"].to(device), | |
speaker_embeddings.to(device), | |
vocoder=vocoder | |
) | |
return speech.cpu() | |
# Conversión final | |
target_dtype = np.int16 | |
max_range = np.iinfo(target_dtype).max | |
def speech_to_speech_translation(audio): | |
translated_text = translate(audio) | |
synthesised_speech = synthesise(translated_text) | |
synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16) | |
return 16000, synthesised_speech | |
# Interfaz Gradio | |
demo = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(sources="microphone", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
) | |
demo.launch(debug=True) | |