import gradio as gr from transformers import pipeline, MarianTokenizer, AutoModelForSeq2SeqLM import torch import unicodedata import re import whisper import tempfile import os import nltk nltk.download('punkt') from nltk.tokenize import sent_tokenize import fitz # PyMuPDF import docx from bs4 import BeautifulSoup import markdown2 import chardet # Device setup device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Load Hausa MarianMT model from HF hub (cached manually) translator = None whisper_model = None HF_TOKEN = os.getenv("HF_TOKEN") def load_hausa_model(): global translator if translator is None: model_name = "LocaleNLP/english_hausa" model = AutoModelForSeq2SeqLM.from_pretrained(model_name, token=HF_TOKEN).to(device) tokenizer = MarianTokenizer.from_pretrained(model_name, token=HF_TOKEN) translator = pipeline("translation", model=model, tokenizer=tokenizer, device=0 if device.type == 'cuda' else -1) return translator def load_whisper_model(): global whisper_model if whisper_model is None: whisper_model = whisper.load_model("base") return whisper_model def transcribe_audio(audio_file): model = load_whisper_model() if isinstance(audio_file, str): audio_path = audio_file else: with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp: tmp.write(audio_file.read()) audio_path = tmp.name result = model.transcribe(audio_path) if not isinstance(audio_file, str): os.remove(audio_path) return result["text"] def extract_text_from_file(uploaded_file): # Handle both filepath (str) and file-like object if isinstance(uploaded_file, str): file_path = uploaded_file file_type = file_path.split('.')[-1].lower() with open(file_path, "rb") as f: content = f.read() else: file_type = uploaded_file.name.split('.')[-1].lower() content = uploaded_file.read() if file_type == "pdf": with fitz.open(stream=content, filetype="pdf") as doc: return "\n".join([page.get_text() for page in doc]) elif file_type == "docx": if isinstance(uploaded_file, str): doc = docx.Document(file_path) else: doc = docx.Document(uploaded_file) return "\n".join([para.text for para in doc.paragraphs]) else: encoding = chardet.detect(content)['encoding'] if encoding: content = content.decode(encoding, errors='ignore') if file_type in ("html", "htm"): soup = BeautifulSoup(content, "html.parser") return soup.get_text() elif file_type == "md": html = markdown2.markdown(content) soup = BeautifulSoup(html, "html.parser") return soup.get_text() elif file_type == "srt": return re.sub(r"\d+\n\d{2}:\d{2}:\d{2},\d{3} --> .*?\n", "", content) elif file_type in ("txt", "text"): return content else: raise ValueError("Unsupported file type") def translate(text): translator = load_hausa_model() lang_tag = ">>hau<<" paragraphs = text.split("\n") translated_output = [] with torch.no_grad(): for para in paragraphs: if not para.strip(): translated_output.append("") continue sentences = [s.strip() for s in para.split('. ') if s.strip()] formatted = [f"{lang_tag} {s}" for s in sentences] results = translator(formatted, max_length=5000, num_beams=5, early_stopping=True, no_repeat_ngram_size=3, repetition_penalty=1.5, length_penalty=1.2) translated_sentences = [r['translation_text'].capitalize() for r in results] translated_output.append('. '.join(translated_sentences)) return "\n".join(translated_output) def process_input(input_mode, text, audio_file, file_obj): input_text = "" if input_mode == "Text": input_text = text elif input_mode == "Audio": if audio_file is not None: input_text = transcribe_audio(audio_file) elif input_mode == "File": if file_obj is not None: input_text = extract_text_from_file(file_obj) return input_text def translate_and_return(text): if not text.strip(): return "No input text to translate." return translate(text) # Gradio UI components with gr.Blocks() as demo: gr.Markdown("## LocaleNLP English-to-Hausa Translator") gr.Markdown("Upload English text, audio, or document to translate to Hausa using Localenlp model.") with gr.Row(): input_mode = gr.Radio(choices=["Text", "Audio", "File"], label="Select input mode", value="Text") input_text = gr.Textbox(label="Enter English text", lines=10, visible=True) audio_input = gr.Audio(label="Upload audio (.wav, .mp3, .m4a)", type="filepath", visible=False) file_input = gr.File(file_types=['.pdf', '.docx', '.html', '.htm', '.md', '.srt', '.txt'], label="Upload document", visible=False) extracted_text = gr.Textbox(label="Extracted / Transcribed Text", lines=10, interactive=False) translate_button = gr.Button("Translate to Hausa") output_text = gr.Textbox(label="Translated Hausa Text", lines=10, interactive=False) def update_visibility(mode): return { input_text: gr.update(visible=(mode=="Text")), audio_input: gr.update(visible=(mode=="Audio")), file_input: gr.update(visible=(mode=="File")), extracted_text: gr.update(value="", visible=True), output_text: gr.update(value="") } input_mode.change(fn=update_visibility, inputs=input_mode, outputs=[input_text, audio_input, file_input, extracted_text, output_text]) def handle_process(mode, text, audio, file_obj): try: extracted = process_input(mode, text, audio, file_obj) return extracted, "" except Exception as e: return "", f"Error: {str(e)}" translate_button.click(fn=handle_process, inputs=[input_mode, input_text, audio_input, file_input], outputs=[extracted_text, output_text]) def handle_translate(text): return translate_and_return(text) translate_button.click(fn=handle_translate, inputs=extracted_text, outputs=output_text) demo.launch()