Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline, MarianTokenizer, AutoModelForSeq2SeqLM | |
import torch | |
import unicodedata | |
import re | |
import whisper | |
import tempfile | |
import os | |
import nltk | |
nltk.download('punkt') | |
from nltk.tokenize import sent_tokenize | |
import fitz # PyMuPDF | |
import docx | |
from bs4 import BeautifulSoup | |
import markdown2 | |
import chardet | |
# Device setup | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# Load Hausa MarianMT model from HF hub (cached manually) | |
translator = None | |
whisper_model = None | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
def load_hausa_model(): | |
global translator | |
if translator is None: | |
model_name = "LocaleNLP/english_hausa" | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, token=HF_TOKEN).to(device) | |
tokenizer = MarianTokenizer.from_pretrained(model_name, token=HF_TOKEN) | |
translator = pipeline("translation", model=model, tokenizer=tokenizer, device=0 if device.type == 'cuda' else -1) | |
return translator | |
def load_whisper_model(): | |
global whisper_model | |
if whisper_model is None: | |
whisper_model = whisper.load_model("base") | |
return whisper_model | |
def transcribe_audio(audio_file): | |
model = load_whisper_model() | |
if isinstance(audio_file, str): | |
audio_path = audio_file | |
else: | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp: | |
tmp.write(audio_file.read()) | |
audio_path = tmp.name | |
result = model.transcribe(audio_path) | |
if not isinstance(audio_file, str): | |
os.remove(audio_path) | |
return result["text"] | |
def extract_text_from_file(uploaded_file): | |
# Handle both filepath (str) and file-like object | |
if isinstance(uploaded_file, str): | |
file_path = uploaded_file | |
file_type = file_path.split('.')[-1].lower() | |
with open(file_path, "rb") as f: | |
content = f.read() | |
else: | |
file_type = uploaded_file.name.split('.')[-1].lower() | |
content = uploaded_file.read() | |
if file_type == "pdf": | |
with fitz.open(stream=content, filetype="pdf") as doc: | |
return "\n".join([page.get_text() for page in doc]) | |
elif file_type == "docx": | |
if isinstance(uploaded_file, str): | |
doc = docx.Document(file_path) | |
else: | |
doc = docx.Document(uploaded_file) | |
return "\n".join([para.text for para in doc.paragraphs]) | |
else: | |
encoding = chardet.detect(content)['encoding'] | |
if encoding: | |
content = content.decode(encoding, errors='ignore') | |
if file_type in ("html", "htm"): | |
soup = BeautifulSoup(content, "html.parser") | |
return soup.get_text() | |
elif file_type == "md": | |
html = markdown2.markdown(content) | |
soup = BeautifulSoup(html, "html.parser") | |
return soup.get_text() | |
elif file_type == "srt": | |
return re.sub(r"\d+\n\d{2}:\d{2}:\d{2},\d{3} --> .*?\n", "", content) | |
elif file_type in ("txt", "text"): | |
return content | |
else: | |
raise ValueError("Unsupported file type") | |
def translate(text): | |
translator = load_hausa_model() | |
lang_tag = ">>hau<<" | |
paragraphs = text.split("\n") | |
translated_output = [] | |
with torch.no_grad(): | |
for para in paragraphs: | |
if not para.strip(): | |
translated_output.append("") | |
continue | |
sentences = [s.strip() for s in para.split('. ') if s.strip()] | |
formatted = [f"{lang_tag} {s}" for s in sentences] | |
results = translator(formatted, | |
max_length=5000, | |
num_beams=5, | |
early_stopping=True, | |
no_repeat_ngram_size=3, | |
repetition_penalty=1.5, | |
length_penalty=1.2) | |
translated_sentences = [r['translation_text'].capitalize() for r in results] | |
translated_output.append('. '.join(translated_sentences)) | |
return "\n".join(translated_output) | |
def process_input(input_mode, text, audio_file, file_obj): | |
input_text = "" | |
if input_mode == "Text": | |
input_text = text | |
elif input_mode == "Audio": | |
if audio_file is not None: | |
input_text = transcribe_audio(audio_file) | |
elif input_mode == "File": | |
if file_obj is not None: | |
input_text = extract_text_from_file(file_obj) | |
return input_text | |
def translate_and_return(text): | |
if not text.strip(): | |
return "No input text to translate." | |
return translate(text) | |
# Gradio UI components | |
with gr.Blocks() as demo: | |
gr.Markdown("## LocaleNLP English-to-Hausa Translator") | |
gr.Markdown("Upload English text, audio, or document to translate to Hausa using Localenlp model.") | |
with gr.Row(): | |
input_mode = gr.Radio(choices=["Text", "Audio", "File"], label="Select input mode", value="Text") | |
input_text = gr.Textbox(label="Enter English text", lines=10, visible=True) | |
audio_input = gr.Audio(label="Upload audio (.wav, .mp3, .m4a)", type="filepath", visible=False) | |
file_input = gr.File(file_types=['.pdf', '.docx', '.html', '.htm', '.md', '.srt', '.txt'], label="Upload document", visible=False) | |
extracted_text = gr.Textbox(label="Extracted / Transcribed Text", lines=10, interactive=False) | |
translate_button = gr.Button("Translate to Hausa") | |
output_text = gr.Textbox(label="Translated Hausa Text", lines=10, interactive=False) | |
def update_visibility(mode): | |
return { | |
input_text: gr.update(visible=(mode=="Text")), | |
audio_input: gr.update(visible=(mode=="Audio")), | |
file_input: gr.update(visible=(mode=="File")), | |
extracted_text: gr.update(value="", visible=True), | |
output_text: gr.update(value="") | |
} | |
input_mode.change(fn=update_visibility, inputs=input_mode, outputs=[input_text, audio_input, file_input, extracted_text, output_text]) | |
def handle_process(mode, text, audio, file_obj): | |
try: | |
extracted = process_input(mode, text, audio, file_obj) | |
return extracted, "" | |
except Exception as e: | |
return "", f"Error: {str(e)}" | |
translate_button.click(fn=handle_process, inputs=[input_mode, input_text, audio_input, file_input], outputs=[extracted_text, output_text]) | |
def handle_translate(text): | |
return translate_and_return(text) | |
translate_button.click(fn=handle_translate, inputs=extracted_text, outputs=output_text) | |
demo.launch() | |