english_hausa / app.py
Mgolo's picture
Update app.py
fabd3ba verified
import gradio as gr
from transformers import pipeline, MarianTokenizer, AutoModelForSeq2SeqLM
import torch
import unicodedata
import re
import whisper
import tempfile
import os
import nltk
nltk.download('punkt')
from nltk.tokenize import sent_tokenize
import fitz # PyMuPDF
import docx
from bs4 import BeautifulSoup
import markdown2
import chardet
# Device setup
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load Hausa MarianMT model from HF hub (cached manually)
translator = None
whisper_model = None
HF_TOKEN = os.getenv("HF_TOKEN")
def load_hausa_model():
global translator
if translator is None:
model_name = "LocaleNLP/english_hausa"
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, token=HF_TOKEN).to(device)
tokenizer = MarianTokenizer.from_pretrained(model_name, token=HF_TOKEN)
translator = pipeline("translation", model=model, tokenizer=tokenizer, device=0 if device.type == 'cuda' else -1)
return translator
def load_whisper_model():
global whisper_model
if whisper_model is None:
whisper_model = whisper.load_model("base")
return whisper_model
def transcribe_audio(audio_file):
model = load_whisper_model()
if isinstance(audio_file, str):
audio_path = audio_file
else:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
tmp.write(audio_file.read())
audio_path = tmp.name
result = model.transcribe(audio_path)
if not isinstance(audio_file, str):
os.remove(audio_path)
return result["text"]
def extract_text_from_file(uploaded_file):
# Handle both filepath (str) and file-like object
if isinstance(uploaded_file, str):
file_path = uploaded_file
file_type = file_path.split('.')[-1].lower()
with open(file_path, "rb") as f:
content = f.read()
else:
file_type = uploaded_file.name.split('.')[-1].lower()
content = uploaded_file.read()
if file_type == "pdf":
with fitz.open(stream=content, filetype="pdf") as doc:
return "\n".join([page.get_text() for page in doc])
elif file_type == "docx":
if isinstance(uploaded_file, str):
doc = docx.Document(file_path)
else:
doc = docx.Document(uploaded_file)
return "\n".join([para.text for para in doc.paragraphs])
else:
encoding = chardet.detect(content)['encoding']
if encoding:
content = content.decode(encoding, errors='ignore')
if file_type in ("html", "htm"):
soup = BeautifulSoup(content, "html.parser")
return soup.get_text()
elif file_type == "md":
html = markdown2.markdown(content)
soup = BeautifulSoup(html, "html.parser")
return soup.get_text()
elif file_type == "srt":
return re.sub(r"\d+\n\d{2}:\d{2}:\d{2},\d{3} --> .*?\n", "", content)
elif file_type in ("txt", "text"):
return content
else:
raise ValueError("Unsupported file type")
def translate(text):
translator = load_hausa_model()
lang_tag = ">>hau<<"
paragraphs = text.split("\n")
translated_output = []
with torch.no_grad():
for para in paragraphs:
if not para.strip():
translated_output.append("")
continue
sentences = [s.strip() for s in para.split('. ') if s.strip()]
formatted = [f"{lang_tag} {s}" for s in sentences]
results = translator(formatted,
max_length=5000,
num_beams=5,
early_stopping=True,
no_repeat_ngram_size=3,
repetition_penalty=1.5,
length_penalty=1.2)
translated_sentences = [r['translation_text'].capitalize() for r in results]
translated_output.append('. '.join(translated_sentences))
return "\n".join(translated_output)
def process_input(input_mode, text, audio_file, file_obj):
input_text = ""
if input_mode == "Text":
input_text = text
elif input_mode == "Audio":
if audio_file is not None:
input_text = transcribe_audio(audio_file)
elif input_mode == "File":
if file_obj is not None:
input_text = extract_text_from_file(file_obj)
return input_text
def translate_and_return(text):
if not text.strip():
return "No input text to translate."
return translate(text)
# Gradio UI components
with gr.Blocks() as demo:
gr.Markdown("## LocaleNLP English-to-Hausa Translator")
gr.Markdown("Upload English text, audio, or document to translate to Hausa using Localenlp model.")
with gr.Row():
input_mode = gr.Radio(choices=["Text", "Audio", "File"], label="Select input mode", value="Text")
input_text = gr.Textbox(label="Enter English text", lines=10, visible=True)
audio_input = gr.Audio(label="Upload audio (.wav, .mp3, .m4a)", type="filepath", visible=False)
file_input = gr.File(file_types=['.pdf', '.docx', '.html', '.htm', '.md', '.srt', '.txt'], label="Upload document", visible=False)
extracted_text = gr.Textbox(label="Extracted / Transcribed Text", lines=10, interactive=False)
translate_button = gr.Button("Translate to Hausa")
output_text = gr.Textbox(label="Translated Hausa Text", lines=10, interactive=False)
def update_visibility(mode):
return {
input_text: gr.update(visible=(mode=="Text")),
audio_input: gr.update(visible=(mode=="Audio")),
file_input: gr.update(visible=(mode=="File")),
extracted_text: gr.update(value="", visible=True),
output_text: gr.update(value="")
}
input_mode.change(fn=update_visibility, inputs=input_mode, outputs=[input_text, audio_input, file_input, extracted_text, output_text])
def handle_process(mode, text, audio, file_obj):
try:
extracted = process_input(mode, text, audio, file_obj)
return extracted, ""
except Exception as e:
return "", f"Error: {str(e)}"
translate_button.click(fn=handle_process, inputs=[input_mode, input_text, audio_input, file_input], outputs=[extracted_text, output_text])
def handle_translate(text):
return translate_and_return(text)
translate_button.click(fn=handle_translate, inputs=extracted_text, outputs=output_text)
demo.launch()