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a b s t r a c t

Highly (111)-oriented nanotwinned copper (nt-Cu) and non-conductive paste (NCP) were

employed to fabricate hybrid CueCu bonding. We tailored and correlated the fracture

modes, bonding strengths, and microstructures of the joints. A non-flow underfilling

process was performed, and low temperature bonding was achieved in a single heat

treatment at 180 �C for 120 min without vacuum. We found that under a post-annealing

treatment, recrystallization and grain growth occurred. The bonding interfaces were

partially removed and the joints were further strengthened. The fracture modes of the

hybrid bonding structure were characterized using pull tests and correlated with their

bonding properties. Such hybrid CueCu microbumps with high bonding strength and low

thermal budget can be widely used for advanced ultra-fine-pitch packaging.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

As the world enters the artificial intelligence (AI) and 5G era,

the demand for high-performance computing (HPC) chips has

increased. In particular, the COVID-19 pandemic has led to

huge demand for long-distance communication and work-

from-home electronic devices. To enhance computing per-

formance and further extend Moore's law, the concept of

vertical integration based on three-dimensional integrated

circuits (3D-ICs) was proposed [1e7]. Thus, a larger number of

chips can be stacked to increase energy density [5,6,8], and the
. Chen).
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power consumed by solder joint interconnects during signal

transmission can be significantly reduced [9,10]. However, the

size of solder joints is required to scale down to the submicron

scale for advanced 3D-IC technology. Yet, there are various

reliability concerns of solder joints, such as the formations of

brittle intermetallic compounds (IMC) [4,11e16], bridging

during reflow, and side wall wetting (voids and/or necking)

[11,12]. These have limited the scale-down efforts. Cu-to-Cu

direct bonding is regarded as one of the key technologies to

achieving vertical integration and to replacing solder joint

interconnects.
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In the semiconductor industry, low temperature bonding is

of great interest, and many bonding technologies have been

developed [17e29]. As chips are connected among various

electronic components, a high bonding temperature will

cause severe damage [30], which is of critical consideration. In

the advanced packaging technology, hybrid bonding has

become an important research topic in recent years. For

instance, Sony Corp. has successfully employed Cu-to-Cu

hybrid bonded interconnects in complementary metal-

oxide-semiconductor (CMOS) image sensors [31]. In such

hybrid bonding, the large mismatch of coefficient of thermal

expansion (CTE) between oxide and Cu bumps (electrical in-

terconnects) is utilized [32]. Thus, at an elevated temperature,

the dishing gaps between Cu bumps are closed without an

external pressure because the expansion of Cu is greater than

that of oxide. Normally, a chemical mechanical planarization

(CMP) step is needed to accurately control the height (Cu

dishing gap) and surface roughness at bonding regions [33].

Such a complex hybrid bonding technology is costly and still

in the developmental stage.

In this study, columnar grained nanotwinned copper (nt-

Cu) with a high degree of (111)-orientation, electroplated by

direct current [34], was used for hybrid bonding. Those nt-Cu

have been proven to possess superior mechanical properties

[35e38], high thermal stability [39,40], and great resistance to

electromigration (EM) failures [41e44], which are applicable

for low temperature bonding [45e48]. Combined with a non-

conductive paste (NCP), the advantages of the two can be

employed [49]. Note that a non-flow process is different from
Fig. 1 e Schematic diagrams of (a) the hyb
the traditional underfilling, because it requires only one

heating step [50]. After dispensing the NCP, bonding can be

directly carried out without a surface post-treatment. For

comparison, a fine-pitch hybrid bonding using SiO2 has been

reported [51,52], which can provide good bonding but the

bonding processes are unexpectedly complicated and costly.

In our study, we employed nt-Cu and NCP with novel thermal

strategies to fabricate Cu-to-Cu hybrid bonding. The bonding

processes proposed are relatively simple and have potential

for the industrial applications of ultra-fine-pitch bonding.
2. Experimental

In this study, a bump-to-film structurewas fabricated. The top

die (bump) with nt-Cu microbumps and highly (111)-oriented

nt-Cu films were prepared. NCP was applied to prevent

oxidation and to protect the bonded structure. The NCP used

is a type of non-flow underfill. The Cu redistribution lines

(RDLs) were first electroplated. After electroplating, a poly-

benzoxazole (PBO) polymer layer peeling film was immedi-

ately spin-coated onto the substrate to protect the Cu RDLs.

Thus, the oxidation issue could be prevented. PBO is a ther-

mally stable polymer with low dielectric constants and low

water absorption attributing to the absent carbonyl groups in

its polymer backbone. The PBO has a Tg of 310 �C. The

composition of the residue at 550 �C does not change signifi-

cantly from that of the original polymer [53]. The major

decomposition occurs between 550 and 660 �C, with a total
rid bonding process and (b) pull test.
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weight loss of 20%. At 300 �C, we believe that such a temper-

ature did not decompose the PBO, but possibly decomposed

the NCP, because the NCP (Tg of 100 �C) consisted of an epoxy

[54]. A curing temperature of 180 �C is recommended. It re-

melts at 245 �C. Detailed properties of the NCP (Alpha NCX-

PRL507) can be found in the technical data sheet [54].

Various passivation openings of PBO were fabricated through

a lithography process, and the nt-Cu microbumps were then

electroplated on and diced into several (6 x 6 mm) top dies.

There were 4548 microbumps on each die. The diameter,

height, and pitch of the microbumps were ~30, 15, and 80 mm,

respectively.

Several nt-Cu bottom dies were electroplated by a direct

current density of 80 mA/cm2 for 3 min and electro-polished.

In this study, a single crystal (100) Si substrate with pre-

deposited Ti adhesion (100 nm) and Cu seed (200 nm) films
Fig. 2 e Typical cross-sectional FIB images of
was used. The planarized nt-Cu films (3-mm thick) were then

cut into various samples with a physical dimension of 10 x

10 mm. The schematic diagram of the bonding process is

shown in Fig. 1a. Before bonding, the top die and the nt-Cu

film (substrate) were cleaned using acetone, isopropanol, cit-

ric acid, and deionized (DI) water. Their surfaces were then

flattened through a CMP process. NCP was subsequently

dispensed at room temperature on the nt-Cu film. As the top

die was fully covered by the NCP, an applied force was exerted

to fill the gap between the bumps.

A screw bonder was used to apply a bonding pressure

(~40 MPa). We employed a screw bonder because it is easy to

fix the samples on the holder or to replace a new holder.

Additionally, a screw bonder is a low-cost device compared to

others, thus, the experimental costs can be significantly

reduced. It was then put into a tube oven. The bonding was
(a) the microbumps and (b) nt-Cu films.
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annealed in air at 180 �C for 2 h. After that, a pull test was

conducted to measure its bonding strength and fracture

modes. Note that shearing tests are commonly used to char-

acterize the shearing strength of joints. However, due to the

small scale in shear height of the microbump samples, die

shear tools may provide a non-uniform pressure causing the

bending of the thin samples, leading to the combination of

shearing and tension. As the bonding is increasingly

deformed, its cross-section accordingly increases and the

shear strength proportionally increases, leading to more se-

vere bending. This leads to data scattering of bonding

strength. Pull tests can be employed to accuratelymeasure the

bonding strength and characterize the fracture modes of very

flat samples. The samples are under pure tension, thus the

applied stresses on the bonding are less complicated and

bonding measurements are easier to conduct. The pull tests

can eliminate the thickness issues of shear tests. The sche-

matic diagram of the pull test is shown in Fig. 1b. We focused

on the bottom substrate (nt-Cu film) to characterize the frac-

ture modes of the samples and the bumps.
Fig. 3 e Typical OIM and AFM images of the (a,b) m
The grain orientation imagingmaps (OIM) of the nt-Cu film

and microbumps were obtained using an electron back-

scattered diffraction (EBSD) system combined with a scan-

ning electronmicroscope (SEM, JEOL 7800 FESEM). The surface

roughness of the nt-Cu film and microbumps was examined

by atomic forcemicroscopy (AFM, Bruker Dimension Edge and

Dimension Icon). A focused ion beam system (FIB, FEI Helios

G3CX) was employed to observe microbump cross-sections,

bonding interfaces, and NCP filling.
3. Results and discussion

Figure 2 shows the cross-sectional FIB images of the micro-

bumps and nt-Cu films. The typical OIM and AFM images of

the microbumps and nt-Cu films are shown in Fig. 3. It can be

observed that the nt-Cu films were highly (111)-oriented

(98.9%). The microbumps were partially (111)-oriented due to

their geometry, as shown in Fig. 3a. The (111)-orientation

ratio was approximately 58.5%. Some columnar grains grew
icrobumps and (c,d) nt-Cu films, respectively.
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Table 1 e Heating profiles applied for the NCP filling. Room temperature is denoted as RT.

Heating profile-A Heating profile-B Heating profile-C

~3 min (RT to 180 �C) ~3 min (RT to 180 �C) ~3 min (RT to 50 �C)
65 min (50e180 �C)

120 min bonding (180 �C) 180 min bonding (180 �C) 120 min bonding (180 �C)

Fig. 4 e Three typical heating profiles employed to achieve the NCP filling: (a) profile-A, (b) profile-B, and (c) profile-C.
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up to the surface along the PBO layer, forming a non-(111)

region. Such regions were mostly scattered in the center of

the microbumps. The AFM images show that the surfaces of

the nt-Cu were smooth. The surface roughness (Rq) of the

microbumps and nt-Cu films was ~3.5 and 2.0 nm,

respectively.

In order to analyze the filling capability of the NCP, we

conducted three thermal strategies, as shown in Table 1 and

Fig. 4. The heating profile-A and -B show that the bonding

temperatures increased rapidly to 180 �C. The temperature of
Fig. 5 e Cross-sectional FIB images of the NCP filling with diffe

profile-C.
profile-C was raised to 50 �C with a heating rate of 10 �C/min,

and subsequently up to 180 �C with a lower rate (2 �C/min).

The samples under the heating profile-C were treated at a low

temperature for longer time.

Figure 5 shows the cross-sectional FIB images of the NCP

filling under different heating profiles. Various bubbles were

found inside the NCP filling under the heating profile-A and -B.

In fact, the NCP consisted of a solvent. The bubbles were the

product of pre-existing solvent and/or moisture in the NCP

which undergone significant outgassing. They disappeared as
rent heating strategies: (a) profile-A, (b) profile-B, and (c)
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Table 2 e Detailed parameters of the two-stage bonding (Condition A and B) and the bonding (Condition C) with post-
annealing.

Condition A Condition B Condition C

150 �C, 60 min with external pressure 200 �C, 30 min with external pressure 180 �C, 120 min with external pressure

180 �C, 150 min w/o external pressure 180 �C, 150 min w/o external pressure 300 �C, 60 min w/o external pressure
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the curing temperature slowly increased. The heating rate of

profile-C in the front stage was controlled. Thus, the NCP

could maintain their fluidity. They were squeezed out from
Fig. 6 e Typical cross-sectional FIB images of the nt-Cu microbu

(two-stage bonding); (b) 200 �C for 30 min and 180 �C for 150 mi

60 min (with post-annealing).
the bonding interface and filled the neighboring gaps. The first

step (50 �C) is needed to slowly trigger the filling process. The

bubbles had time to escape before curing. The heating profile
mps bonded at: (a) 150 �C for 60 min and 180 �C for 150 min

n (two-stage bonding); (c) 180 �C for 120 min and 300 �C for

https://doi.org/10.1016/j.jmrt.2022.03.009
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Fig. 7 e Cross-sectional FIB images of the nt-Cu microbumps bonded at (a) 180 �C for 120 min without post-annealing, (b)

180 �C for 120 min with post-annealing at 250 �C for 60 min, and (c) 180 �C for 120 min with post-annealing at 300 �C for

60 min.

Fig. 8 e Typical cross-sectional FIB image of the microbumps bonded at 180 �C for 120 min showing a partially eliminated

bonding interface.
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C played an important role (65 min), and the second heating

step was aimed to accelerate the filling and facilitate the

curing process. As a result, a good filling was obtained by

adopting the heating profile-C. Therefore, such a heating

profile was chosen and conducted for further

characterizations.

In this study, two-stage bonding was conducted to inves-

tigate whether the changes in bonding temperature and time

could enhance the bonding of the microbumps and the curing

of the NCP. The details of the bonding parameters are listed in

Table 2. Note that the recommended curing parameters of the

NCP are for parameter design. Ideally, the first stage of heating

was employed to achieve the Cu-to-Cu bonding with an

external pressure. The second stage of heating was used to

cure the NCP without an applied pressure. Figure 6a and 6b

shows the typical cross-sectional FIB images of the bumps

after the two-stage bonding. A huge crack was observed at the

center of the bonding interface. It appeared after the second

heating process. It is noteworthy that the first-stage heating

could not completely cure the NCP. It was further advanced by

the second-stage heating. Without an external pressure, the

expansions of the polymer layers (PBO and NCP) were not

restricted, thus the delamination of bonding occurred. Note

that the CTEs of the dielectrics (PBO and NCP) are greater than

that of the Cu (two to four times). At an elevated temperature

(180 or 300 �C), the middle of the CueCu bumps was subjected

to tensile stresses [27]. Additionally, the bonding interface can

be considered as the weakest grain boundary. Therefore,

cracks initiated and propagated from the pre-existing defects

at the middle region of the bonding interface. Figure 6c shows

the FIB image of the microbumps after post-annealing at

300 �C for 60 min. After heating twice, no obvious crack was

found at the bonding interface. The NCP could be completely

cured by the first-stage heating. In the second stage, even

without an external pressure, the polymer layer did not

further expand, preventing the delamination of the bonding

interface.

Figure 7 shows the cross-sectional FIB images of the

microbumps with and without post-annealing treatments.

Recrystallization and grain growth can be observed in the nt-
Fig. 9 e Percentage of the bonding interface elimination in

the microbumps with and without post-annealing.
Cu films and the microbumps. Some grains grew across the

bonding interface resulting in the partial elimination of the

bonding interface (Fig. 7b and c). Although nt-Cu possesses

high thermal stability, recrystallization and grain growth still

occurred due to the pressure (40 MPa) of the screw bonder

during the thermal compression bonding process. It partially

eliminated the bonding interface. Note that no pressure was

applied during the post-annealing, yet interfacial grain growth

and recrystallization could further occur.

As shown in Fig. 7a, the bonding interface was partially

eliminated, as bonded at 180 �C for 120 min. Figs. 7 b and c

show the joints after post-annealing at 250 and 300 �C for

60 min, respectively. It is obvious that, after the post-

annealing, various grain growth occurred in the nt-Cu films

and microbumps, thus further eliminating the bonding

interface. Such a phenomenon can be clearly seen in Fig. 8.

The red dashed line represents the initial bonding interface.

Obviously, some grains grew across the bonding interface

leading to the formation of some zig zag patterns.

Additionally, the fraction of the eliminated bonding inter-

face was estimated by measuring the lengths of the elimi-

nated and initial interfaces, as shown in Fig. 9. We used a tool

(ImageJ) to estimate the fractions in the cross-sectional FIB

images.We found that the bonding quality of themicrobumps

was apparently enhanced by the post-annealing treatments.

Figure 10 shows the bonding strength of the microbumps

using pull tests. Obviously, the hybrid CueCu joints were

strengthened by such a heat treatment corresponding to their

fraction of the eliminated bonding interface (Fig. 9). Their

bonding strength was approximately doubled after the post-

annealing. Such an enhancement could be attributed to the

partial elimination of the bonding interface as a result of the

recrystallization and grain growth across the bonding inter-

face under the post-annealing treatment. In addition, the

measured bonding strength for the joints after 250 �C for 1 h is

over 30MPa, which is comparable to those values published in

literature [26,55e59].

In this study, we also characterized the bonding quality of

the joints by their fracture modes. They were classified based

on two viewpoints, “the samples” and “the bumps.” The
Fig. 10 e Bondingstrengthcharacteristicsof themicrobumps

with and without post-annealing.

https://doi.org/10.1016/j.jmrt.2022.03.009
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Fig. 11 e Schematic diagrams and actual images of the fracture modes of the nt-Cu bonded samples. (a) An ideal bonding

between the top die and nt-Cu film. (b), (c), (d), and (e) are the fracture modes I, II, III, and IV, respectively.
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fracture modes of the samples were directly qualified by

observing the sample fractures after a pull test. The schematic

drawings and actual images of the fracture modes are shown

in Fig. 11. Herein, four fracture modes were identified.

Figure 11a shows an ideal bonding between the top die and

bottom film (nt-Cu film). Figure 11b shows the fracture at the

bottom film, which is defined as mode I. The top die and

bottom film were strongly bonded. As the top die was pulled

upwards, the nt-Cu film fractured, and some partial film

remained on the top die. This could be attributed to the non-

uniformity of the bonding pressure. Figure 11c shows the

fracture occurred as a result of a uniform bonding pressure,

which is defined as mode II. The fracture surface was uni-

formly flat. Fracturemode III is shown in Fig. 11d. The fracture

areawas smaller than that of themode II. Some regionswith a

poor bonding quality and/or pre-existing cracks on the top die

could initially cause stress concentration in the joints and

finally lead to such a fracture. Figure 11e shows the fracture

due to a non-uniform bonding pressure, which is defined as

mode IV. The bonding pressure in some regions (dented

bonding, left) was too large while it was insufficient in the

other areas (poor bonding, right). The bonding strengths of the

joints (high to low) were in accordance with mode I, mode II,

mode III, and mode IV.
Additionally, we characterized the fracture modes of the

microbumps after pull tests using SEM. Herein, five fracture

modes were identified and classified. The schematic drawings

and SEM images of the fracturemodes are shown in Fig. 12. An

ideal bonding between the microbump and nt-Cu film is

depicted in Fig. 12a. In Fig. 12b, it shows that the microbump

and Cu RDL maintained on top of the nt-Cu film because the

bonding strength of the microbump and nt-Cu film was

extremely high. We define it as an RDL fracture. Figure 12c

shows that the microbump was partially removed, which is

defined as a volcano-shaped fracture. Figure 12d shows a

bump-RDL fracture on the passivation opening, and we define

it as a passivation opening fracture. The bonding strength

between the microbump and nt-Cu film was greater than that

between the bump and nt-Cu RDL. Stress concentration likely

appeared in the small area of the passivation opening.

Figure 12e and f shows similar fractures at the bonding

interface between themicrobump and nt-Cu film. They can be

defined as polymer layer peeling and bonding interface frac-

tures, respectively. These were due to the low bonding quality

of the microbump and nt-Cu film. The bonding strengths of

the microbumps (classified from high to low) were in corre-

spondence with RDL, volcano-shaped, passivation opening,

polymer layer peeling, and bonding interface fractures.

https://doi.org/10.1016/j.jmrt.2022.03.009
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Fig. 12 e Schematic diagrams and SEM images of the fracture modes of the microbumps. (a) An ideal bonding between the

bump and nt-Cu film. (b,c,d,e,f) are RDL, volcano-shaped, passivation opening, polymer layer peeling, and bonding interface

fractures, respectively.
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Obviously, the fracture modes of the CueCu microbumps and

the bonded samples are different, as shown in Figs. 11 and 12.

In this study, we aimed to investigate the fracture modes with

and without NCP using a bump-to-film structure and to

correlate these with their bonding strengths. We found that

various fracture modes of the CueCu microbumps and

bonding samples occurred in a single tested specimen. These

could be ascribed to the non-uniformity of bonding pressure.
4. Summary and conclusions

In summary, nt-Cu and NCP were used to fabricate the hybrid

Cu-to-Cu microbumps without underfilling. We employed

various thermal strategies to tailor and correlate them with

their microstructures and bonding properties. It was found

that the heating rate influenced the void formation in the

https://doi.org/10.1016/j.jmrt.2022.03.009
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cured NCP as a result of the rapid outgassing of solvent. By

tuning the heating rate, the filling process of the NCP could be

optimized. A post-annealing treatment was employed to fully

cure the NCP and microbumps. Under such a thermal treat-

ment, recrystallization and grain growth occurred and

strengthened the hybrid Cu-to-Cu joints. The results show

that their bonding interfaces were partially eliminated after a

post-annealing treatment. Additionally, the fracture modes of

the bonded samples were characterized and correlated with

their bonding strengths. Taking advantage of the nt-Cu and

NCP, such low budget hybrid bonding could be achieved in a

non-vacuum environment at a low temperature. Thus, they

can be widely applied to the mass production of the advanced

ultra-fine pitch devices.
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