Spaces:
Paused
Paused
| import streamlit as st | |
| import faiss | |
| from sentence_transformers import SentenceTransformer | |
| import pickle | |
| import re | |
| from transformers import pipeline | |
| st.set_page_config(page_title = "Vietnamese Legal Question Answering System", page_icon= "🐧", layout="centered", initial_sidebar_state="collapsed") | |
| with open('articles.pkl', 'rb') as file: | |
| articles = pickle.load(file) | |
| index_loaded = faiss.read_index("sentence_embeddings_index_no_citation.faiss") | |
| if 'model_embedding' not in st.session_state: | |
| st.session_state.model_embedding = SentenceTransformer('bkai-foundation-models/vietnamese-bi-encoder') | |
| # Replace this with your own checkpoint | |
| model_checkpoint = "model" | |
| question_answerer = pipeline("question-answering", model=model_checkpoint) | |
| def question_answering(question): | |
| print(question) | |
| query_sentence = [question] | |
| query_embedding = st.session_state.model_embedding.encode(query_sentence) | |
| k = 10 | |
| D, I = index_loaded.search(query_embedding.astype('float32'), k) # D is distances, I is indices | |
| answer = [question_answerer(question=query_sentence[0], context=articles[I[0][i]], max_answer_len = 256) for i in range(k)] | |
| best_answer = max(answer, key=lambda x: x['score']) | |
| print(best_answer['answer']) | |
| if best_answer['score'] > 0.5: | |
| return best_answer['answer'] | |
| return f"Tôi không chắc lắm nhưng có lẽ câu trả lời là: \n{best_answer['answer']}" | |
| if "messages" not in st.session_state: | |
| st.session_state.messages = [] | |
| for message in st.session_state.messages: | |
| with st.chat_message(message["role"]): | |
| st.markdown(message["content"]) | |
| def clean_answer(s): | |
| # Sử dụng regex để loại bỏ tất cả các ký tự đặc biệt ở cuối chuỗi | |
| return re.sub(r'[^aAàÀảẢáÁạẠăĂằẰẳẲẵẴắẮặẶâÂầẦẩẨẫẪấẤậẬbBcCdDđĐeEèÈẻẺẽẼéÉẹẸêÊềỀểỂễỄếẾệỆfFgGhHiIìÌỉỈĩĨíÍịỊjJkKlLmMnNoOòÒỏỎõÕóÓọỌôÔồỒổỔỗỖốỐộỘơƠờỜởỞỡỠớỚợỢpPqQrRsStTuUùÙủỦũŨúÚụỤưƯừỪửỬữỮứỨựỰvVwWxXyYỳỲỷỶỹỸýÝỵỴzZ0-9]+$', '', s) | |
| if prompt := st.chat_input("What is up?"): | |
| st.session_state.messages.append({"role": "user", "content": prompt}) | |
| with st.chat_message("user"): | |
| st.markdown(prompt) | |
| response = clean_answer(question_answering(prompt)) | |
| with st.chat_message("assistant"): | |
| st.markdown(response) | |
| st.session_state.messages.append({"role": "assistant", "content": response}) | |