Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -20,77 +20,112 @@ except Exception as e:
|
|
20 |
model_loaded_successfully = False
|
21 |
print("Sentiment analysis model failed to load. Please check MODEL_ID and network connection.")
|
22 |
|
23 |
-
# --- Custom CSS
|
24 |
-
# Este CSS define todo el aspecto visual sin depender de un tema de Gradio
|
25 |
custom_css = """
|
26 |
body {
|
27 |
-
background-color: #
|
28 |
-
color: #
|
|
|
29 |
}
|
30 |
.gradio-container {
|
31 |
-
box-shadow: 0 4px 8px rgba(
|
32 |
border-radius: 10px;
|
33 |
overflow: hidden;
|
34 |
-
background-color: #
|
35 |
padding: 20px;
|
36 |
margin-bottom: 20px;
|
|
|
37 |
}
|
38 |
h1, h2, h3 {
|
39 |
-
color: #
|
40 |
text-align: center;
|
41 |
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
42 |
animation: fadeIn 1s ease-in-out;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
}
|
44 |
.gr-button.primary {
|
45 |
-
background-color: #
|
46 |
-
color: #
|
47 |
border-radius: 6px;
|
48 |
transition: background-color 0.3s ease;
|
49 |
-
padding:
|
|
|
|
|
|
|
50 |
}
|
51 |
.gr-button.primary:hover {
|
52 |
-
background-color: #
|
|
|
53 |
}
|
54 |
.gradio-output {
|
55 |
-
border: 1px solid #
|
56 |
border-radius: 8px;
|
57 |
padding: 15px;
|
58 |
margin-top: 15px;
|
59 |
-
background-color: #
|
60 |
-
color: #
|
61 |
}
|
62 |
.sentiment-display {
|
63 |
text-align: center;
|
64 |
padding: 10px;
|
65 |
border-radius: 6px;
|
66 |
margin-top: 10px;
|
67 |
-
font-size: 1.
|
68 |
font-weight: bold;
|
|
|
69 |
}
|
70 |
.sentiment-positive {
|
71 |
-
background-color: #
|
72 |
-
color: #e8f5e9; /* Light green */
|
73 |
}
|
74 |
.sentiment-negative {
|
75 |
-
background-color: #
|
76 |
-
color: #ffebee; /* Light red */
|
77 |
}
|
78 |
.sentiment-neutral {
|
79 |
-
background-color: #
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
}
|
82 |
@keyframes fadeIn {
|
83 |
from { opacity: 0; }
|
84 |
to { opacity: 1; }
|
85 |
}
|
86 |
-
/* Estilos para las etiquetas de los componentes de entrada */
|
87 |
-
gr-textbox > label {
|
88 |
-
color: #80cbc4;
|
89 |
-
}
|
90 |
-
/* Asegúrate de que las etiquetas de salida también tengan color */
|
91 |
-
.gradio-output .label {
|
92 |
-
color: #80cbc4; /* Color de acento para las etiquetas de salida */
|
93 |
-
}
|
94 |
"""
|
95 |
|
96 |
# --- Helper Function for Sentiment Interpretation ---
|
@@ -99,6 +134,8 @@ def interpret_sentiment(label, score):
|
|
99 |
description = ""
|
100 |
color_class = ""
|
101 |
|
|
|
|
|
102 |
if label.lower() == "positive" or label.lower() == "label_2":
|
103 |
emoji = "😊"
|
104 |
description = "This text expresses a **highly positive** sentiment." if score > 0.9 else "This text expresses a **positive** sentiment."
|
@@ -117,62 +154,50 @@ def interpret_sentiment(label, score):
|
|
117 |
color_class = ""
|
118 |
|
119 |
return f"<div class='sentiment-display {color_class}'>{emoji} {label.upper()} ({score:.2f})</div>" + \
|
120 |
-
f"<p>{description}</p>"
|
121 |
|
122 |
# --- Sentiment Analysis Function ---
|
123 |
def analyze_sentiment(text):
|
124 |
if not model_loaded_successfully:
|
125 |
-
# Devuelve 3 valores: HTML, dict, dict (para JSON)
|
126 |
return (
|
127 |
-
"<div class='sentiment-display'>⚠️ Model Not Loaded ⚠️</div><p>Please contact the administrator. The sentiment analysis model failed to load.</p>",
|
128 |
-
{},
|
129 |
-
{"error": "Model loading failed."}
|
130 |
)
|
131 |
|
132 |
if not text.strip():
|
133 |
-
# Devuelve 3 valores: HTML, dict, dict (para JSON)
|
134 |
return (
|
135 |
-
"<div class='sentiment-display'>✍️ Please enter some text! ✍️</div><p>Start typing to analyze its sentiment.</p>",
|
136 |
-
{},
|
137 |
-
{"info": "No text entered."}
|
138 |
)
|
139 |
|
140 |
try:
|
141 |
-
# Asegúrate de que la salida del pipeline es una lista de listas, y toma la primera.
|
142 |
results = sentiment_analyzer(text)[0]
|
143 |
|
144 |
-
# Ordenar los resultados por puntuación de confianza de mayor a menor
|
145 |
results_sorted = sorted(results, key=lambda x: x['score'], reverse=True)
|
146 |
|
147 |
-
# Tomar el primer elemento (el de mayor confianza)
|
148 |
top_sentiment = results_sorted[0]
|
149 |
label = top_sentiment['label']
|
150 |
score = top_sentiment['score']
|
151 |
|
152 |
-
# Crear un diccionario de puntuaciones de confianza para la salida de la etiqueta
|
153 |
confidence_scores_output = {item['label']: item['score'] for item in results}
|
154 |
|
155 |
-
# Generar el HTML para mostrar el sentimiento general
|
156 |
overall_sentiment_display = interpret_sentiment(label, score)
|
157 |
|
158 |
-
# ¡CORRECCIÓN FINAL AQUÍ! Pasa 'results' directamente, no str(results)
|
159 |
-
# Gradio se encargará de serializar este objeto Python a JSON
|
160 |
return (overall_sentiment_display, confidence_scores_output, results)
|
161 |
|
162 |
except Exception as e:
|
163 |
-
# En caso de cualquier error durante el análisis, devuelve 3 valores de error
|
164 |
return (
|
165 |
-
f"<div class='sentiment-display'>❌ Error ❌</div><p>An error occurred during analysis: {e}</p>",
|
166 |
-
{},
|
167 |
-
{"error_message": str(e)}
|
168 |
)
|
169 |
|
170 |
# --- Gradio Interface ---
|
171 |
-
# Al establecer theme=None, Gradio no aplicará ningún tema predefinido.
|
172 |
-
# Todo el estilo visual vendrá de nuestro `custom_css`.
|
173 |
with gr.Blocks(css=custom_css, theme=None) as demo:
|
174 |
-
gr.Markdown("<h1 style='color: #
|
175 |
-
gr.Markdown("<p style='color: #
|
176 |
|
177 |
with gr.Column(elem_classes="gradio-container"):
|
178 |
text_input = gr.Textbox(
|
@@ -184,10 +209,9 @@ with gr.Blocks(css=custom_css, theme=None) as demo:
|
|
184 |
)
|
185 |
analyze_btn = gr.Button("Analyze Sentiment", variant="primary")
|
186 |
|
187 |
-
gr.Markdown("<hr
|
188 |
-
gr.Markdown("<h3 style='color: #
|
189 |
|
190 |
-
# IMPORTANTE: Desactivamos cache_examples para evitar el FileNotFoundError
|
191 |
examples = gr.Examples(
|
192 |
examples=[
|
193 |
["This product exceeded my expectations, truly amazing!"],
|
@@ -199,21 +223,19 @@ with gr.Blocks(css=custom_css, theme=None) as demo:
|
|
199 |
],
|
200 |
inputs=text_input,
|
201 |
fn=analyze_sentiment,
|
202 |
-
# Asegúrate de que estos 3 outputs coinciden con los 3 valores que devuelve analyze_sentiment
|
203 |
outputs=[gr.HTML(label="Overall Sentiment"), gr.Label(num_top_classes=3, label="Confidence Scores"), gr.JSON(label="Raw Model Output", visible=False)],
|
204 |
-
cache_examples=False
|
205 |
)
|
206 |
|
207 |
-
gr.Markdown("<hr
|
208 |
-
gr.Markdown("<h2 style='color: #
|
209 |
|
210 |
-
# Estas variables de salida deben coincidir en tipo y orden con lo que devuelve analyze_sentiment
|
211 |
overall_sentiment_output = gr.HTML(label="Overall Sentiment")
|
212 |
confidence_scores_output = gr.Label(num_top_classes=3, label="Confidence Scores")
|
213 |
-
|
|
|
214 |
|
215 |
# --- Event Listeners ---
|
216 |
-
# Los outputs aquí también deben coincidir con los 3 valores que devuelve analyze_sentiment
|
217 |
analyze_btn.click(
|
218 |
fn=analyze_sentiment,
|
219 |
inputs=text_input,
|
|
|
20 |
model_loaded_successfully = False
|
21 |
print("Sentiment analysis model failed to load. Please check MODEL_ID and network connection.")
|
22 |
|
23 |
+
# --- Custom CSS with the NEW COLOR PALETTE ---
|
|
|
24 |
custom_css = """
|
25 |
body {
|
26 |
+
background-color: #1E2B38; /* Fondo General Oscuro */
|
27 |
+
color: #FFFFFF; /* Blanco para texto principal */
|
28 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
29 |
}
|
30 |
.gradio-container {
|
31 |
+
box-shadow: 0 4px 8px rgba(0, 122, 204, 0.2); /* Sombra con Azul Oscuro */
|
32 |
border-radius: 10px;
|
33 |
overflow: hidden;
|
34 |
+
background-color: #1E2B38; /* Fondo de la tarjeta, coincide con el body para un look unificado */
|
35 |
padding: 20px;
|
36 |
margin-bottom: 20px;
|
37 |
+
border: 1px solid #007ACC; /* Borde sutil con Azul Oscuro */
|
38 |
}
|
39 |
h1, h2, h3 {
|
40 |
+
color: #00BFFF; /* Azul Brillante para títulos */
|
41 |
text-align: center;
|
42 |
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
43 |
animation: fadeIn 1s ease-in-out;
|
44 |
+
margin-top: 5px; /* Reducir margen superior de títulos */
|
45 |
+
margin-bottom: 15px; /* Reducir margen inferior de títulos */
|
46 |
+
}
|
47 |
+
p {
|
48 |
+
color: #AAB7C4; /* Gris medio para texto secundario */
|
49 |
+
text-align: center;
|
50 |
+
margin-bottom: 20px; /* Margen debajo de los párrafos */
|
51 |
+
}
|
52 |
+
.gr-textbox label, .gradio-output .label {
|
53 |
+
color: #AAB7C4 !important; /* Gris medio para las etiquetas de los componentes */
|
54 |
+
font-weight: bold;
|
55 |
+
}
|
56 |
+
.gr-textbox textarea {
|
57 |
+
background-color: #007ACC20; /* Azul Oscuro muy transparente para el fondo del textarea */
|
58 |
+
border: 1px solid #007ACC; /* Borde con Azul Oscuro */
|
59 |
+
color: #FFFFFF; /* Texto blanco en el textarea */
|
60 |
+
border-radius: 6px;
|
61 |
+
padding: 10px;
|
62 |
}
|
63 |
.gr-button.primary {
|
64 |
+
background-color: #00BFFF !important; /* Azul Brillante para el botón primario */
|
65 |
+
color: #1E2B38 !important; /* Texto oscuro para el botón primario */
|
66 |
border-radius: 6px;
|
67 |
transition: background-color 0.3s ease;
|
68 |
+
padding: 12px 25px; /* Ajuste de padding para el botón */
|
69 |
+
font-size: 1.1em;
|
70 |
+
font-weight: bold;
|
71 |
+
margin-top: 15px; /* Margen superior para separar del textarea */
|
72 |
}
|
73 |
.gr-button.primary:hover {
|
74 |
+
background-color: #007ACC !important; /* Azul Oscuro al pasar el ratón */
|
75 |
+
color: #FFFFFF !important; /* Texto blanco al pasar el ratón */
|
76 |
}
|
77 |
.gradio-output {
|
78 |
+
border: 1px solid #4A5B6C; /* Borde sutil con Gris Claro */
|
79 |
border-radius: 8px;
|
80 |
padding: 15px;
|
81 |
margin-top: 15px;
|
82 |
+
background-color: #007ACC15; /* Fondo más sutil para la salida */
|
83 |
+
color: #FFFFFF; /* Texto blanco en la salida */
|
84 |
}
|
85 |
.sentiment-display {
|
86 |
text-align: center;
|
87 |
padding: 10px;
|
88 |
border-radius: 6px;
|
89 |
margin-top: 10px;
|
90 |
+
font-size: 1.2em; /* Un poco más grande para el resultado principal */
|
91 |
font-weight: bold;
|
92 |
+
color: #FFFFFF; /* Texto blanco para todos los sentimientos */
|
93 |
}
|
94 |
.sentiment-positive {
|
95 |
+
background-color: #28a745; /* Verde Bootstrap similar */
|
|
|
96 |
}
|
97 |
.sentiment-negative {
|
98 |
+
background-color: #dc3545; /* Rojo Bootstrap similar */
|
|
|
99 |
}
|
100 |
.sentiment-neutral {
|
101 |
+
background-color: #007BFF; /* Azul Bootstrap similar */
|
102 |
+
}
|
103 |
+
.gradio-example-highlighted {
|
104 |
+
background-color: #00BFFF20 !important; /* Un poco de azul brillante para ejemplos seleccionados */
|
105 |
+
border: 1px solid #00BFFF !important;
|
106 |
+
}
|
107 |
+
.gradio-example-button {
|
108 |
+
background-color: #4A5B6C !important; /* Gris Claro para los botones de ejemplo */
|
109 |
+
color: #FFFFFF !important;
|
110 |
+
border: 1px solid #4A5B6C;
|
111 |
+
border-radius: 5px;
|
112 |
+
padding: 8px 12px;
|
113 |
+
margin: 5px;
|
114 |
+
transition: background-color 0.3s ease;
|
115 |
+
}
|
116 |
+
.gradio-example-button:hover {
|
117 |
+
background-color: #007ACC !important; /* Azul Oscuro al pasar el ratón por los ejemplos */
|
118 |
+
border-color: #00BFFF !important;
|
119 |
+
}
|
120 |
+
hr {
|
121 |
+
border-top: 1px solid #4A5B6C; /* Línea divisoria con Gris Claro */
|
122 |
+
margin-top: 25px;
|
123 |
+
margin-bottom: 25px;
|
124 |
}
|
125 |
@keyframes fadeIn {
|
126 |
from { opacity: 0; }
|
127 |
to { opacity: 1; }
|
128 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
"""
|
130 |
|
131 |
# --- Helper Function for Sentiment Interpretation ---
|
|
|
134 |
description = ""
|
135 |
color_class = ""
|
136 |
|
137 |
+
# Asegúrate de que las etiquetas coincidan con las salidas reales de tu modelo
|
138 |
+
# 'LABEL_0' es negativo, 'LABEL_1' es neutral, 'LABEL_2' es positivo
|
139 |
if label.lower() == "positive" or label.lower() == "label_2":
|
140 |
emoji = "😊"
|
141 |
description = "This text expresses a **highly positive** sentiment." if score > 0.9 else "This text expresses a **positive** sentiment."
|
|
|
154 |
color_class = ""
|
155 |
|
156 |
return f"<div class='sentiment-display {color_class}'>{emoji} {label.upper()} ({score:.2f})</div>" + \
|
157 |
+
f"<p style='color: #FFFFFF;'>{description}</p>" # Asegurar que la descripción también sea blanca
|
158 |
|
159 |
# --- Sentiment Analysis Function ---
|
160 |
def analyze_sentiment(text):
|
161 |
if not model_loaded_successfully:
|
|
|
162 |
return (
|
163 |
+
"<div class='sentiment-display'>⚠️ Model Not Loaded ⚠️</div><p style='color: #FFFFFF;'>Please contact the administrator. The sentiment analysis model failed to load.</p>",
|
164 |
+
{},
|
165 |
+
{"error": "Model loading failed."}
|
166 |
)
|
167 |
|
168 |
if not text.strip():
|
|
|
169 |
return (
|
170 |
+
"<div class='sentiment-display'>✍️ Please enter some text! ✍️</div><p style='color: #FFFFFF;'>Start typing to analyze its sentiment.</p>",
|
171 |
+
{},
|
172 |
+
{"info": "No text entered."}
|
173 |
)
|
174 |
|
175 |
try:
|
|
|
176 |
results = sentiment_analyzer(text)[0]
|
177 |
|
|
|
178 |
results_sorted = sorted(results, key=lambda x: x['score'], reverse=True)
|
179 |
|
|
|
180 |
top_sentiment = results_sorted[0]
|
181 |
label = top_sentiment['label']
|
182 |
score = top_sentiment['score']
|
183 |
|
|
|
184 |
confidence_scores_output = {item['label']: item['score'] for item in results}
|
185 |
|
|
|
186 |
overall_sentiment_display = interpret_sentiment(label, score)
|
187 |
|
|
|
|
|
188 |
return (overall_sentiment_display, confidence_scores_output, results)
|
189 |
|
190 |
except Exception as e:
|
|
|
191 |
return (
|
192 |
+
f"<div class='sentiment-display'>❌ Error ❌</div><p style='color: #FFFFFF;'>An error occurred during analysis: {e}</p>",
|
193 |
+
{},
|
194 |
+
{"error_message": str(e)}
|
195 |
)
|
196 |
|
197 |
# --- Gradio Interface ---
|
|
|
|
|
198 |
with gr.Blocks(css=custom_css, theme=None) as demo:
|
199 |
+
gr.Markdown("<h1 style='color: #00BFFF;'>🌌 Sentiment Analyzer 🌌</h1>")
|
200 |
+
gr.Markdown("<p style='color: #AAB7C4;'>Uncover the emotional tone of your English text instantly.</p>")
|
201 |
|
202 |
with gr.Column(elem_classes="gradio-container"):
|
203 |
text_input = gr.Textbox(
|
|
|
209 |
)
|
210 |
analyze_btn = gr.Button("Analyze Sentiment", variant="primary")
|
211 |
|
212 |
+
gr.Markdown("<hr>")
|
213 |
+
gr.Markdown("<h3 style='color: #00BFFF;'>Try some examples:</h3>")
|
214 |
|
|
|
215 |
examples = gr.Examples(
|
216 |
examples=[
|
217 |
["This product exceeded my expectations, truly amazing!"],
|
|
|
223 |
],
|
224 |
inputs=text_input,
|
225 |
fn=analyze_sentiment,
|
|
|
226 |
outputs=[gr.HTML(label="Overall Sentiment"), gr.Label(num_top_classes=3, label="Confidence Scores"), gr.JSON(label="Raw Model Output", visible=False)],
|
227 |
+
cache_examples=False
|
228 |
)
|
229 |
|
230 |
+
gr.Markdown("<hr>")
|
231 |
+
gr.Markdown("<h2 style='color: #00BFFF;'>📊 Analysis Results</h2>")
|
232 |
|
|
|
233 |
overall_sentiment_output = gr.HTML(label="Overall Sentiment")
|
234 |
confidence_scores_output = gr.Label(num_top_classes=3, label="Confidence Scores")
|
235 |
+
# Deja Raw Model Output como visible=False para ahorrar espacio en el iframe por defecto
|
236 |
+
raw_output = gr.JSON(label="Raw Model Output", visible=False)
|
237 |
|
238 |
# --- Event Listeners ---
|
|
|
239 |
analyze_btn.click(
|
240 |
fn=analyze_sentiment,
|
241 |
inputs=text_input,
|