Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
import os | |
# Añade esto para verificar la versión de Gradio en tiempo de ejecución | |
print(f"Gradio version at runtime: {gr.__version__}") | |
# --- Model Loading --- | |
MODEL_ID = "Light-Dav/sentiment-analysis-full-project" | |
try: | |
# Esto carga tu modelo pre-entrenado desde Hugging Face Hub | |
# top_k=None asegura que se devuelvan las puntuaciones de todas las clases (positivo, negativo, neutral) | |
sentiment_analyzer = pipeline("sentiment-analysis", model=MODEL_ID, top_k=None) | |
model_loaded_successfully = True | |
print("Sentiment analysis model loaded successfully.") | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
sentiment_analyzer = None | |
model_loaded_successfully = False | |
print("Sentiment analysis model failed to load. Please check MODEL_ID and network connection.") | |
# --- Custom CSS for a dark look inspired by the website --- | |
# Este CSS define todo el aspecto visual sin depender de un tema de Gradio | |
custom_css = """ | |
body { | |
background-color: #121212; /* Dark background */ | |
color: #f8f8f2; /* Light text */ | |
} | |
.gradio-container { | |
box-shadow: 0 4px 8px rgba(255, 255, 255, 0.1); | |
border-radius: 10px; | |
overflow: hidden; | |
background-color: #1e1e1e; /* Darker card background */ | |
padding: 20px; | |
margin-bottom: 20px; | |
} | |
h1, h2, h3 { | |
color: #80cbc4; /* Teal/Cyan accents */ | |
text-align: center; | |
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; | |
animation: fadeIn 1s ease-in-out; | |
} | |
.gr-button.primary { | |
background-color: #80cbc4 !important; | |
color: #1e1e1e !important; | |
border-radius: 6px; | |
transition: background-color 0.3s ease; | |
padding: 10px 20px; | |
} | |
.gr-button.primary:hover { | |
background-color: #26a69a !important; | |
} | |
.gradio-output { | |
border: 1px solid #424242; | |
border-radius: 8px; | |
padding: 15px; | |
margin-top: 15px; | |
background-color: #212121; | |
color: #f8f8f2; | |
} | |
.sentiment-display { | |
text-align: center; | |
padding: 10px; | |
border-radius: 6px; | |
margin-top: 10px; | |
font-size: 1.1em; | |
font-weight: bold; | |
} | |
.sentiment-positive { | |
background-color: #388e3c; /* Darker green */ | |
color: #e8f5e9; /* Light green */ | |
} | |
.sentiment-negative { | |
background-color: #d32f2f; /* Darker red */ | |
color: #ffebee; /* Light red */ | |
} | |
.sentiment-neutral { | |
background-color: #1976d2; /* Darker blue */ | |
color: #e3f2fd; /* Light blue */ | |
} | |
@keyframes fadeIn { | |
from { opacity: 0; } | |
to { opacity: 1; } | |
} | |
/* Estilos para las etiquetas de los componentes de entrada */ | |
gr-textbox > label { | |
color: #80cbc4; | |
} | |
/* Asegúrate de que las etiquetas de salida también tengan color */ | |
.gradio-output .label { | |
color: #80cbc4; /* Color de acento para las etiquetas de salida */ | |
} | |
""" | |
# --- Helper Function for Sentiment Interpretation --- | |
def interpret_sentiment(label, score): | |
emoji = "" | |
description = "" | |
color_class = "" | |
if label.lower() == "positive" or label.lower() == "label_2": | |
emoji = "😊" | |
description = "This text expresses a **highly positive** sentiment." if score > 0.9 else "This text expresses a **positive** sentiment." | |
color_class = "sentiment-positive" | |
elif label.lower() == "negative" or label.lower() == "label_0": | |
emoji = "😠" | |
description = "This text expresses a **highly negative** sentiment." if score > 0.9 else "This text expresses a **negative** sentiment." | |
color_class = "sentiment-negative" | |
elif label.lower() == "neutral" or label.lower() == "label_1": | |
emoji = "😐" | |
description = "This text expresses a **neutral** sentiment." | |
color_class = "sentiment-neutral" | |
else: | |
emoji = "❓" | |
description = "Could not confidently determine sentiment. Unexpected label." | |
color_class = "" | |
return f"<div class='sentiment-display {color_class}'>{emoji} {label.upper()} ({score:.2f})</div>" + \ | |
f"<p>{description}</p>" | |
# --- Sentiment Analysis Function --- | |
def analyze_sentiment(text): | |
if not model_loaded_successfully: | |
# Devuelve 3 valores: HTML, dict, string | |
return ( | |
"<div class='sentiment-display'>⚠️ Model Not Loaded ⚠️</div><p>Please contact the administrator. The sentiment analysis model failed to load.</p>", | |
{}, # Diccionario vacío para Confidence Scores | |
"Model loading failed." # String de error para Raw Output | |
) | |
if not text.strip(): | |
# Devuelve 3 valores: HTML, dict, string | |
return ( | |
"<div class='sentiment-display'>✍️ Please enter some text! ✍️</div><p>Start typing to analyze its sentiment.</p>", | |
{}, # Diccionario vacío para Confidence Scores | |
"" # String vacío para Raw Output | |
) | |
try: | |
# Asegúrate de que la salida del pipeline es una lista de listas, y toma la primera. | |
results = sentiment_analyzer(text)[0] | |
# Ordenar los resultados por puntuación de confianza de mayor a menor | |
results_sorted = sorted(results, key=lambda x: x['score'], reverse=True) | |
# Tomar el primer elemento (el de mayor confianza) | |
top_sentiment = results_sorted[0] | |
label = top_sentiment['label'] | |
score = top_sentiment['score'] | |
# Crear un diccionario de puntuaciones de confianza para la salida de la etiqueta | |
confidence_scores_output = {item['label']: item['score'] for item in results} | |
# Generar el HTML para mostrar el sentimiento general | |
overall_sentiment_display = interpret_sentiment(label, score) | |
# ¡CAMBIO CLAVE AQUÍ! Ahora devuelve una tupla con 3 valores separados | |
return (overall_sentiment_display, confidence_scores_output, str(results)) | |
except Exception as e: | |
# En caso de cualquier error durante el análisis, devuelve 3 valores de error | |
return ( | |
f"<div class='sentiment-display'>❌ Error ❌</div><p>An error occurred during analysis: {e}</p>", | |
{}, # Diccionario vacío para Confidence Scores | |
f"Error: {e}" # String de error para Raw Output | |
) | |
# --- Gradio Interface --- | |
# Al establecer theme=None, Gradio no aplicará ningún tema predefinido. | |
# Todo el estilo visual vendrá de nuestro `custom_css`. | |
with gr.Blocks(css=custom_css, theme=None) as demo: | |
gr.Markdown("<h1 style='color: #80cbc4; text-align: center;'>🌌 Sentiment Analyzer 🌌</h1>") | |
gr.Markdown("<p style='color: #f8f8f2; text-align: center;'>Uncover the emotional tone of your English text instantly.</p>") | |
with gr.Column(elem_classes="gradio-container"): | |
text_input = gr.Textbox( | |
lines=7, | |
placeholder="Type your English text here...", | |
label="Your Text", | |
interactive=True, | |
value="This movie was absolutely brilliant! A masterpiece of storytelling and emotion." | |
) | |
analyze_btn = gr.Button("Analyze Sentiment", variant="primary") | |
gr.Markdown("<hr style='border-top: 1px solid #424242;'>") | |
gr.Markdown("<h3 style='color: #80cbc4; text-align: center;'>Try some examples:</h3>") | |
# IMPORTANTE: Desactivamos cache_examples para evitar el FileNotFoundError | |
examples = gr.Examples( | |
examples=[ | |
["This product exceeded my expectations, truly amazing!"], | |
["I found the customer service to be quite disappointing and slow."], | |
["The weather forecast predicts light rain for tomorrow morning."], | |
["What a fantastic experience! Highly recommend it."], | |
["I'm so frustrated with this slow internet connection."], | |
["The meeting concluded without any major decisions."] | |
], | |
inputs=text_input, | |
fn=analyze_sentiment, | |
# Asegúrate de que estos 3 outputs coinciden con los 3 valores que devuelve analyze_sentiment | |
outputs=[gr.HTML(label="Overall Sentiment"), gr.Label(num_top_classes=3, label="Confidence Scores"), gr.JSON(label="Raw Model Output", visible=False)], | |
cache_examples=False # ESTE ES EL CAMBIO CLAVE PARA ELIMINAR EL FileNotFoundError | |
) | |
gr.Markdown("<hr style='border-top: 1px solid #424242;'>") | |
gr.Markdown("<h2 style='color: #80cbc4;'>📊 Analysis Results</h2>") | |
# Estas variables de salida deben coincidir en tipo y orden con lo que devuelve analyze_sentiment | |
overall_sentiment_output = gr.HTML(label="Overall Sentiment") | |
confidence_scores_output = gr.Label(num_top_classes=3, label="Confidence Scores") | |
raw_output = gr.JSON(label="Raw Model Output", visible=False) | |
# --- Event Listeners --- | |
# Los outputs aquí también deben coincidir con los 3 valores que devuelve analyze_sentiment | |
analyze_btn.click( | |
fn=analyze_sentiment, | |
inputs=text_input, | |
outputs=[overall_sentiment_output, confidence_scores_output, raw_output] | |
) | |
text_input.change( | |
fn=analyze_sentiment, | |
inputs=text_input, | |
outputs=[overall_sentiment_output, confidence_scores_output, raw_output], | |
# live=True # Puedes descomentar si quieres actualizaciones en vivo (consume más recursos) | |
) | |
# Launch the Gradio application | |
demo.launch() |